cannot be performed in the absence of electron-rich groups
on the participating aromatic rings. Attempts to generate
diversely functionalized analogues of the title molecules for
the purpose of biological screening are scarcely described
in the literature.5 Furthermore, to the best of our knowledge,
there has been no literature precedent related to the synthesis
and manipulations of the potent 7-aza analogues after the
pioneering work of Koga et al.3
rings in the target molecules will be hampered due to the
presumably high activation barrier of the reaction. As we
have demonstrated in previous work related to the synthesis
of natural product analogues containing difficultly obtainable
medium-sized ring systems,6b microwave irradiation could
greatly contribute to solve this problem.
We started our synthesis from the commercially available
3,4-dimethoxybenzyl alcohol (1) (Scheme 2). The regiose-
As part of our ongoing research focused on the microwave-
enhanced synthesis of medium-sized-ring natural product
analogues,6 we have developed a new strategy for the
synthesis of novel steganacin and steganone 7-aza analogues.
Herein, we wish to delineate the first total synthesis of such
analogues containing a 1,2,3-triazole ring. Our new approach
for the formation of a [1,5-a]azocine skeleton was based on
a microwave enhanced Suzuki-Miyaura cross-coupling
reaction7 in combination with microwave-enhanced “click
chemistry”.8 Furthermore, partially due to the increased
current interest in click chemistry, 1,2,3-triazole moieties are
emerging as powerful pharmacophores in their own right.9
As can be viewed from the retrosynthetic scheme (Scheme
1), the success of our protocol mainly depends on the
Scheme 2. Suzuki-Miyaura Reaction in the Synthesis of the
Key Biaryl Aldehyde 4
lective bromination of alcohol 1 was carried out with NBS
in CCl4 and afforded alcohol 2 in 70% yield. To minimize
problems associated with the cross-coupling reactions of
highly electron-rich halides with boronic acids bearing an
electron-withdrawing group, we decided to carry out the
Suzuki-Miyaura reaction under our previously optimized
microwave-irradiation conditions.6a However, attempts to
carry out the Suzuki-Miyaura cross-coupling between
alcohol 2 and (2-formylphenyl)boronic acid to generate the
required biaryl skeleton met with failure, due to the formation
of an inseparable mixture of biaryls together with traces of
hemi-acetals in a combined yield of 48% (Scheme 3). An
Scheme 1. Retrosynthetic Analysis
Suzuki-Miyaura cross-coupling reaction and the consecutive
heterocyclization resulting in the formation of an eight-
member ring fused with a 1,2,3-triazole ring.
The Huisgen 1,3-dipolar cycloaddition10 of azides and
alkynes is a fast and efficient approach for the synthesis of
1,2,3-triazoles. However, the generation of medium-sized
Scheme 3. Suzuki-Miyaura Reaction between Alcohol 2 and
(2-Formylphenyl)boronic Acid
(5) (a) Meyers, A. I.; Flisak, J. R.; Aitken, R. A. J. Am. Chem. Soc.
1987, 109, 5446-5452. (b) Magnus, P.; Schultz, J.; Gallagher, T. J. Am.
Chem. Soc. 1985, 107, 4984-4988. (c) Monovich, L. G.; Le Huerou, Y.;
Roenn, M.; Molander, G. A. J. Am. Chem. Soc. 2000, 122, 52-57. (d)
Kamikawa, K.; Watanabe, T.; Daimon, A.; Uemura, M. Tetrahedron 2000,
56, 2325-2337.
(6) (a) Appukkuttan, P.; Orts, A. B.; Chandran, R. P.; Goeman, J. L.;
Van der Eycken, J.; Dehaen, W.; Van der Eycken, E. Eur. J. Org. Chem.
2004, 3277-3285; (b) Appukkuttan, P.; Dehaen, W.; Van der Eycken, E.
Org. Lett. 2005, 7, 2723-2726.
(7) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483. (b)
Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-coupling Reactions; Wiley-
VCH: Weinheim, 1998; p 517. (c) Suzuki, A. J. Organomet. Chem. 1999,
576, 147-168. (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002,
58, 9633-9695 and references therein. (e) Leadbeater, N. E. Chem.
Commun. 2005, 23, 2881-2902. (f) Apukkuttan, P.; Van der Eycken, E.;
Dehaen, W. Synlett 2005, 127-133.
(8) (a) Punna, S.; Diaz, D. D.; Li, C.; Sharpless, K. B.; Fokin, V. V.;
Finn, M. G. Polym. Prepr. (Am. Chem. Soc., DiV. Polym. Chem.) 2004, 45,
778-779. (b) Kolb, H. C.; Sharpless, K. B. Drug DiscoV. Today 2003, 8,
1128-1137. (c) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem.,
Int. Edit. 2001, 40, 2004-2021 and references therein. (d) Apukkuttan, P.;
Fokin, V. V.; Dehaen, W.; Van der Eycken, E. Org. Lett. 2004, 6, 4223-
4225. (e) Kaval, N.; Ermolat’ev, D.; Appukkuttan, P.; Dehaen, W.; Kappe,
C. O.; Van der Eycken, E. J. Comb. Chem. 2005, 7, 490-502.
intramolecular disproportionation reaction between the al-
cohol and aldehyde centers of the molecule occurred.
(9) (a) Biagi, G.; Calderone, V.; Giorgi, I.; Livi, O.; Martinotti, E.;
Martelli, A.; Nardi, A. Farmaco 2004, 59, 397-404. (b) Su, C.; Lee, L.-
X.; Yu, S.-H.; Shih, Y.-K.; Su, J.-C.; Li, F.-J.; Lai, C. Liq. Cryst. 2004, 31,
745-749. (c) Zhu, X.; Schmidt, R. R. J. Org. Chem. 2004, 69, 1081-
1085. (d) Olesen, P. H.; Sorensen, A. R.; Urso, B.; Kurtzhals, P.; Bowler,
A. N.; Ehrbar, U.; Hansen, B. F. J. Med. Chem. 2003, 46, 3333-3341. (e)
Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor,
P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053-
1057 and references therein.
488
Org. Lett., Vol. 8, No. 3, 2006