Yamaki et al.
TABLE 1. NHC-Mediated Synthesis of FADIs Using r,ꢀ-Enal Derivatives
precatalyst
entry substrate (30 mol %)
base (30 mol %)
solvent + (additive, equiv) conditions
rt, 15 h
toluene + (EtOH, 3 equiv) rt, 15 h
product(s) (yield %, NMR)
1
2
3
4
5
6
20a
20a
20a
20b
20a
20b
1a
1a
1a
1a
1a
1b
N,N-diisopropylethylamine (DIPEA) THF + (EtOH, 3 equiv)
16a (36), 31a + 32a (12), 20a (51)a
DIPEA
DIPEA
DBU
DIPEA
DIPEA
16a (26), 31a + 32a (18), 20a (55)a
toluene + (EtOH, 5 equiv) 70 °C, 18 h 16a (12), 31a + 32a (23)b, 20a (-)c
THF + (EtOH, 10 equiv)
70 °C, 3 h
70 °C, 7 h
16b (6), 31b + 32b (8)b, 20b (21)c
16a (66)c
EtOH
EtOH
70 °C, 20 h 16b (70)c
a Yields (product ratio) were determined by NMR measurements. b Obtained as mixtures. c Isolated yield.
Results and Discussion
the reaction of an appropriate aldehyde, 25a or 25b, with chiral
phenyl glycinol derivative 26 in the presence of molecular sieves
was subjected to one-pot Honda-Reformatsky conditions
(BrCF2CO2Et + Et2Zn in the presence of catalytic amount of
RhCl(PPh3)3) to yield the chiral fluorinated ꢀ-amino esters 28.18
Hydrogenolitic removal of the chiral auxiliary with Pd(OH)2/
C-H2 followed by N-Boc protection gave the N-Boc-chiral
ꢀ-amino acid derivatives 29. DIBAL-H reduction of the resulting
ester (29a or 29b) followed by the Wittig reaction with
Ph3PdCHCHO (in benzene, 60 °C) yielded requisite substrate
20a (65%) or 20b (60%) with accompanying dienes 30,
respectively. Having the substrates, we next examined the
feasibility of the NHC-initiated synthesis of FADIs, and the
results are summarized in Table 1.
Reaction of 20a with NHC, derived from precatalyst 1a and
N,N-diisopropylethylamine (DIPEA) (30 mol % each), in THF or
toluene in the presence of EtOH at room temperature afforded
desired FADI 16a, albeit in low chemical yields (Table 1, entries
1 and 2).19 In addition to the starting material, these reactions
accompanied the formation of nonnegligible quantities of side
products including difluoro-R,ꢀ-enoate 31a and saturated ester 32a.
Reactions at elevated temperature (70 °C) did not lead to an increase
in the yield of 16 so much as to the formation of unidentified side
products (Table 1, entries 3 and 4). Yields of desired FADIs were
dramatically improved by a reaction in the presence of 1a or 1b20
in EtOH at 70 °C (Table 1, entries 5 and 6), even though the
conversion remained at a moderate level along with the formation
As requisite substrates for reaction evaluation, we first
selected δ-amino-γ,γ-difluoro-R,ꢀ-enal derivatives 20 (Scheme
3). In the course of previous studies on FADIs, we have already
established the synthetic routes for chiral R,R-difluoro-ꢀ-amino
acid derivatives (28 or 29) utilizing the Honda-Reformatsky
reaction.14d,17 In situ formed chiral imines 27 resulting from
(12) For some literature about the synthesis of FADIs or fluoroalkene units,
see: (a) Allmendinger, T.; Felder, E.; Hungerbu¨hler, E. Tetrahedron Lett. 1990,
31, 7301–7304. (b) Boros, L. G.; De Corte, B.; Gimi, R. H.; Welch, J. T.; Wu,
Y.; Handschumacher, R. E. Tetrahedron Lett. 1994, 35, 6033–6036. (c) Bartlett,
P. A.; Otake, A. J. Org. Chem. 1995, 60, 3107–3111. (d) Welch, J. T.; Lin, J.
Tetrahedron 1996, 52, 291–304. (e) Van der Veken, P.; Senten, K.; Kerte`sz, I.;
Meester, I. D.; Lambeir, A.-M.; Maes, M.-B.; Scharpe´, S.; Haemers, A.;
Augustyns, K. J. Med. Chem. 2005, 48, 1768–1780. (f) Dutheuil, G.; Lei, X.;
Pannecoucke, X.; Quirion, J.-C. J. Org. Chem. 2005, 70, 1911–1914. (g) Sano,
S.; Kuroda, Y.; Saito, K.; Ose, Y.; Nagao, Y. Tetrahedron 2006, 62, 11881–
11890. (h) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem.,
Int. Ed. 2007, 46, 1290–1292. (i) Narumi, T.; Tomita, K.; Inokuchi, E.;
Kobayashi, K.; Oishi, S.; Ohno, H.; Fujii, N. Org. Lett. 2007, 9, 3465–3468. (j)
Lamy, C.; Hofmann, J.; Parrot-Lopez, H.; Goekjian, P. Tetrahedron Lett. 2007,
48, 6177–6180. (k) Wnuk, S. F.; Lalama, J.; Garmendia, C. A.; Robert, J.; Zhu,
J.; Pei, D. Bioorg. Med. Chem. 2008, 16, 5090–5102.
(13) Some recent examples of (E)-alkene-type dipeptide isosteres, see: (a)
Oishi, S.; Miyamoto, K.; Niida, A.; Yamamoto, M.; Ajito, K.; Tamamura, H.;
Otaka, A.; Kuroda, Y.; Asai, A.; Fujii, N. Tetrahedron 2006, 62, 1416–1424.
(b) Sasaki, Y.; Niida, A.; Tsuji, T.; Shigenaga, A.; Fujii, N.; Otaka, A. J. Org.
Chem. 2006, 71, 4969–4979, and references cited therein.
(14) Synthesis of FADIs using copper- or SmI2-mediated reductive
defluorination: (a) Otaka, A.; Mitsuyama, E.; Watanabe, H.; Oishi, S.; Tamamura,
H.; Fujii, N. Chem. Commun. 2000, 1081–1082. (b) Otaka, A.; Watanabe, H.;
Mitsuyama, E.; Yukimasa, A.; Tamamura, H.; Fujii, N. Tetrahedron Lett. 2001,
42, 285–287. (c) Otaka, A.; Watanabe, H.; Yukimasa, A.; Oishi, S.; Tamamura,
H.; Fujii, N. Tetrahedron Lett. 2001, 42, 5443–5446. (d) Otaka, A.; Watanabe,
J.; Yukimasa, A.; Sasaki, Y.; Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura,
H.; Fujii, N. J. Org. Chem. 2004, 69, 1634–1645. (e) Niida, A.; Tomita, K.;
Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K.; Fujii, N.
Org. Lett. 2006, 8, 613–616. (f) Narumi, T.; Niida, A.; Tomita, K.; Oishi, S.;
Otaka, A.; Ohno, H.; Fujii, N. Chem. Commun. 2006, 4720–4722. (g) Tomita,
K.; Narumi, T.; Niida, A.; Oishi, S.; Ohno, H.; Fujii, N. Biopolymers 2007, 88,
272–278. (h) Narumi, T.; Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.;
Ohno, H.; Fujii, N. Tetrahedron 2008, 64, 4332–4346.
(15) Taguchi’s group independently developed the reductive defluorination
protocols for the synthesis of FADIs, see: (a) Okada, M.; Nakamura, Y.; Saito,
A.; Sato, A.; Horikawa, H.; Taguchi, T. Chem. Lett. 2002, 28–29. (b) Nakamura,
Y.; Okada, M.; Horikawa, H.; Taguchi, T. J. Fluorine Chem. 2002, 117, 143–
148. (c) Okada, M.; Nakamura, Y.; Saito, A.; Sato, A.; Horikawa, H.; Taguchi,
T. Tetrahedron Lett. 2002, 43, 5845–5847. (d) Nakamura, Y.; Okada, M.; Sato,
A.; Horikawa, H.; Koura, M.; Saito, A.; Taguchi, T. Tetrahedron 2005, 61, 5741–
5753. (e) Nakamura, Y.; Okada, M.; Koura, M.; Tojo, M.; Saito, A.; Sato, A.;
Taguchi, T. J. Fluorine Chem. 2006, 127, 627–636.
(17) Honda-Reformatsky reaction: (a) Honda, T.; Wakabayashi, H.; Kanai,
K. Chem. Pharm. Bull. 2002, 50, 307–308. (b) Kanai, K.; Wakabayashi, H.;
Honda, T. Org. Lett. 2000, 2, 2549–2551. (c) Kanai, K.; Wakabayashi, H.; Honda,
T. Heterocycles 2002, 58, 47–51. (d) Boyer, N.; Gloanec, P.; De Nanteuil, G.;
Jubault, P.; Quirion, J.-C. Tetrahedron 2007, 63, 12352–12366.
(18) The use of isolated imine in Honda-Reformatsky type reaction affords
difluoro-ꢀ-lactam derivatives, see: (a) Sato, K.; Tarui, A.; Matsuda, S.; Omote,
M.; Ando, A.; Kumadaki, I. Tetrahedron Lett. 2005, 46, 7679–7681. (b) Tarui,
A.; Kondo, K.; Taira, H.; Sato, K.; Omote, M.; Kumadaki, I.; Ando, A.
Heterocycles 2007, 73, 203–208. (c) Tarui, A.; Ozaki, D.; Nakajima, N.; Yokota,
Y.; Sokeirik, Y. S.; Sato, K.; Omote, M.; Kumadaki, I.; Ando, A. Tetrahedron
Lett. 2008, 49, 3839–3843.
(19) Fluoroalkene compounds obtained in this study as major isomers have
coupling constants (3JHF ) 35.3-37.0). Those values are very consistent with
those of compounds possessing (Z)-fluoroalkene units. See: Waschu¨sch, R.;
Carran, J.; Savignac, P. Tetrahedron 1996, 52, 14199–14216. (E)-Fluoroalkenes
have smaller coupling constants (3JHF ) 20.0-21.2).12a
(20) Although precatalysts (1a and 1b) were equally effective for the
conversion, column chromatographical purification of the crude obtained by the
reaction with 1b was more easily conducted than that with 1a. Therefore, we
preferentially used NHC precursor 1b at the experiments described later.
(16) (a) Chounan, Y.; Ibuka, T.; Yamamoto, Y. J. Chem. Soc., Chem.
Commun. 1994, 2003–2004. (b) Chounan, Y.; Horino, H.; Ibuka, T.; Yamamoto,
Y. Bull. Chem. Soc. Jpn. 1997, 70, 1953–1959.
3274 J. Org. Chem. Vol. 74, No. 9, 2009