3194
J. Am. Chem. Soc. 2001, 123, 3194-3204
Stille Couplings Catalytic in Tin: The “Sn-O” Approach
William P. Gallagher, Ina Terstiege, and Robert E. Maleczka, Jr.*
Contribution from the Department of Chemistry, Michigan State UniVersity, East Lansing, Michigan 48824
ReceiVed September 28, 2000
Abstract: A one-pot tandem Pd-catalyzed hydrostannylation/Stille coupling protocol for the stereoselective
generation of vinyltins and their subsequent union, employing only catalytic amounts of tin, is described. By
recycling the organotin halide Stille byproduct back to organotin hydride, a hydrostannylation/cross-coupling
sequence can be carried out with catalytic amounts of tin. Such a process is most effective with Me3SnCl
serving as the tin source. This protocol allows a 94% reduction of the tin requirement, while maintaining good
yields (up to 90%) for a variety of Stille products. Furthermore, since one cycle requires the tin to undergo at
least four transformations, each moiety of trialkyltin is experiencing a minimum of 60 reactions over the
course of the hydrostannylation/Stille sequence.
Introduction
fluorous phase,9 and super critical environments.10 Recent work
has also provided a greater mechanistic understanding of the
reaction,11 expanded its scope,12 and improved existing Stille
protocols.13
Many of the newly reported improvements to the Stille
reaction offer greater ease in the separation of the cross-coupled
product from the organotin byproducts. Difficulties in purifica-
tion along with cost and toxicity issues associated with using
stoichiometric amounts of organostannanes14 have long been
considered problematic features of these reactions. Solutions
to the “tin problem” have largely focused on either derivatizing
Beginning in the late 1970s and continuing throughout most
of the 1980s, studies by the late J. K. Stille helped to establish
the palladium-catalyzed cross-coupling reaction of organotin
reactants with a variety of organic electrophiles as a highly
useful method for carbon-carbon σ-bond construction.1,2 Today,
Stille reactions commonly represent a key step in the preparation
of natural products,3 new materials,4 medicinal agents,5 etc.
Although the Stille reaction can be viewed as a routine synthetic
tool, its study continues.1d Recent advances include adaptation
of the method to aqueous,6 combinatorial,7 solid phase,7b,c,8
(6) (a) Genet, J. P.; Savignac, M. J. Organomet. Chem. 1999, 576, 305-
317 and references therein. (b) Rai, R.; Aubrecht, K. B.; Collum, D. B.
Tetrahedron Lett. 1995, 36, 3111-3114.
(1) (a) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771-1780. (b) Stille,
J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-523. (c) Stille, J. K.;
Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813-817. (d) Farina, V.;
Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1-652.
(2) Stille’s early studies were built on the foundation of his prior work
in the area of transition metal oxidative addition chemistry (Stille, J. K.
Acc. Chem. Res. 1977, 10, 434-442) as well as the preliminary reports of
Kosugi et al. See: (a) Kosugi, M.; Shimizu, Y.; Migita, T. J. Organomet.
Chem. 1977, 129, C36-C38. (b) Kosugi, M.; Sasazawa, K.; Shimizu, Y.;
Migita, T. Chem. Lett. 1977, 301-302. (c) Kosugi, M.; Shimizu, Y.; Migita,
T. Chem. Lett. 1977, 1423-1424.
(3) For recent examples see: (a) Laio, B. Q.; Negishi, E.-i. Heterocycles
2000, 52, 1241-1249. (b) Nicolaou, K. C.; Murphy, F.; Barluenga, S.;
Ohshima, T.; Wei, H.; Xu, J.; Gray, D. L. F.; Baudoin, O. J. Am. Chem.
Soc. 2000, 122, 3830-3838. (c) Williams, D, R.; Myers, B. J.; Mi, L. Org.
Lett. 2000, 2, 945-948. (d) Huang, A. X.; Xiong, Z. M.; Corey, E. J. J.
Am. Chem. Soc. 1999, 121, 9999-10003. (e) White, J. D.; Hong, J.;
Robarge, L. A. J. Am. Chem. Soc. 1999, 121, 6206-6216. (f) Wipf, P.;
Coish, P. D. G. J. Org. Chem. 1999, 64, 5053-5061. (g) Smith, A. B., III.;
Ott, G. R. J. Am. Chem. Soc. 1998, 120, 3935-3948. (h) Chen, X. T.;
Zhou, B. S.; Bhattacharya, S. K.; Gutteridge, C. E.; Pettus, T. R. R.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 1998, 37, 789-792.
(4) For recent examples see: (a) Malenfant, P. R. L.; Frechet, J. M. J.
Macromolecules 2000, 33, 3634-3640. (b) Wu, I. Y.; Lin, J. T.; Tao, Y.
T.; Balasubramaniam, E. AdV. Mater. 2000, 12, 668-669. (c) Song, S. Y.;
Shim, H. K. Synth. Met. 2000, 111, 437-439. (d) Van Keuren, E.; Mohwald,
H.; Rozouvan, S.; Schrof, W.; Belov, V.; Matsuda, H.; Yamada, S. J. Phys.
Chem. 1999, 110, 3584-3590. (e) Yao, Y. X.; Tour, J. M. Macromolecules
1999, 32, 2455-2461.
(7) (a) Sieber, F.; Wentworth, P.; Janda, K. D. J. Comb. Chem. 1999, 1,
540-546. (b) Dolle, R. E.; Nelson, K. H., Jr. J. Comb. Chem. 1999, 1,
235-282. (c) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees,
D. C. Tetrahedron 1998, 54, 15385-15443 and references therein.
(8) (a) Wendeborn, S.; De Mesmaeker, A.; Brill, W. K.-D.; Berteina, S.
Acc. Chem. Res. 2000, 33, 215-224. (b) Lee C. Y.; Hanson, R. N.
Tetrahedron 2000, 56, 1623-1629. (c) Kraxner, J.; Arlt, M.; Gmeiner, P.
Synlett 2000, 125-127. (c) Lorsbach, B. A.; Kurth, M. J. Chem. ReV. 1999,
99, 1549-1581. (d) Brody, M. S.; Finn, M. G. Tetrahedron Lett. 1999, 40,
415-418. (e) Hu, Y. H.; Baudart, S.; Porco, J. A. J. Org. Chem. 1999, 64,
1049-1051. (f) Nicolaou, K. C.; Winssinger, N.; Pastor, J.; Murphy, F.
Angew. Chem., Int. Ed. 1998, 37, 2534-2537. (g) Blaskovich, M. A.; Kahn,
M. J. Org. Chem. 1998, 63, 1119-1125. (h) Chamoin, S.; Houldsworth,
S.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4175-4178. (i) Kuhn, H.;
Neumann, W. P. Synlett 1994, 123-124.
(9) (a) Olofsson, K.; Kim, S.-Y.; Larhed, M.; Curran, D. P.; Hallberg,
A. J. Org. Chem. 1999, 64, 4539-4541. (b) Hoshino, M.; Degenkolb, P.;
Curran, D. P. J. Org. Chem. 1997, 62, 8341-8349. (c) Curran, D. P.;
Hadida, S. J. Am. Chem. Soc. 1996, 118, 2531-2532.
(10) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. ReV. 1999, 99, 475-
493. (b) Morita, D. K.; Pesiri, D. R.; David, S. A.; Glaze, W. H.; Tumas,
W. J. Chem. Soc., Chem. Commun. 1998, 1397-1398. (c) Carroll, M. A.;
Holmes, A. B. J. Chem. Soc., Chem. Commun. 1998, 1395-1396.
(11) (a) Casado, A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120, 8978-
8985. (b) Flohr, A. Tetrahedron Lett. 1998, 39, 5177-5180. (c) Quayle,
P.; Wang, J. Y.; Xu, J.; Urch, C. J. Tetrahedron Lett. 1998, 39, 489-492.
(d) Choshi, T.; Yamada, S.; Nobuhiro, J.; Mihara, Y.; Sugino, E.; Hibino,
S. Heterocycles 1998, 48, 11-14. (e) Shirakawa, E.; Yoshida, H.; Hiyama,
T. Tetrahedron Lett. 1997, 38, 5177-5180. (f) Mateo, C.; Cardenas, D. J.;
Fernandez Rivas. C.; Echavarren. A. M. Chem. Eur. J. 1996, 2, 1596-
1606. (g) Farina, V.; Hossain, M. A. Tetrahedron Lett. 1996, 37, 6997-
7000. (h) Vicente, J.; Arcas, A.; Bautista, D.; Tiripicchio, A.; Camellini,
M. T. New J. Chem. 1996, 20, 345-356.
(5) For recent examples see: (a) Hoepping, A.; Johnson, K. M.; George,
C.; Flippen-Anderson, J.; Kozikowski, A. P. J. Med. Chem. 2000, 43, 2064-
2071. (b) Jensen, M. S.; Yang, C. H.; Hsiao, Y.; Rivera, N.; Wells, K. M.;
Chung, J. Y. L.; Yasuda, N.; Hughes, D. L.; Reider, P. J. Org. Lett. 2000,
2, 1081-1084. (c) Marriere, E.; Rouden, J.; Tadino, V.; Lasne, M. C. Org.
Lett. 2000, 2, 1121-1124. (d) Smaill, J. B.; Rewcastle, G. W.; Loo, J. A.;
Greis, K. D.; Chan, O. H.; Reyner, E. L.; Lipka, E.; Showalter, H. D. H.;
Vincent, P. W.; Elliott, W. L.; Denny, W. A. J. Med. Chem. 2000, 43,
1380-1397.
(12) For recent examples see: (a) Littke, A. F.; Fu, G. C. Angew. Chem.,
Int. Ed. 1999, 38, 2411-2413. (b) Barchin, B. M.; Valenciano, J.; Cuadro,
A. M.; Alvarez-Builla, J.; Vaquero, J. J. Org. Lett. 1999, 1, 545-547.
10.1021/ja0035295 CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/17/2001