Organic Letters
Letter
Hill- Cousins, J. T.; Birkin, P. R.; Brown, R. C. D.; Pletcher, D.;
Underwood, T. J. Electrochim. Acta 2011, 56, 4322−4326. (j) Simms, R.;
Dubinsky, S.; Yudin, A.; Kumacheva, E. Lab. Chip 2009, 9, 2395−2397.
(k) He, P.; Watts, P.; Marken, F.; Haswell, S. J. Angew. Chem., Int. Ed.
2006, 45, 4146−4149. (l) Yoshida, J.-H. Chem. Commun. 2005, 4509−
4516. (m) Horii, D.; Atobe, M.; Fuchigami, T.; Marken, F. Electrochem.
Commun. 2005, 7, 35−39. (n) Horcajada, R.; Okajima, M.; Suga, S.;
Yoshida, J. Chem. Commun. 2005, 1303−1305.
(10) (a) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437−1451.
(b) Anastas, P. T.; Zimmerman, J. B. In Sustainability Science and
Engineering Defining Principles; Abrahams, M. A., Ed.; Elsevier: 2006; pp
11−32.
(11) (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981,
103, 1172−1176. (b) Shono, T.; Matsumura, Y.; Uchida, K.; Tsubata,
K.; Makino, A. J. Org. Chem. 1984, 49, 300−304.
(12) (a) Lundkvist, J. R. M.; Vargas, H. M.; Caldirola, P.; Ringdahl, B.;
Hacksel, U. J. Med. Chem. 1990, 33, 3182−3189. (b) Brown, D. S.;
Charreau, P.; Hansson, T.; Ley, S. V. Tetrahedron 1991, 47, 1311−1328.
(c) Myers, E. L.; de Vries, J. G.; Aggarwal, V. K. Angew. Chem., Int. Ed.
2007, 46, 1893−1896.
(14) FCC purification of methoxyamides 11 was not needed prior to
the cyclisation step.
(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;
Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman,
J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01;
Gaussian, Inc.: Wallingford, CT, 2013.
REFERENCES
■
(1) For a recent example of the use of continuous flow photoredox
chemistry to enable natural product synthesis, see: (a) Beatty, J. W.;
Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270−10273. For
recent examples of photoredox catalysis applied to natural product
synthesis, see: (b) Mizoguchi, H.; Oikawa, H.; Oguri, H. Nat. Chem.
2014, 6, 57−64. (c) Sun, Y.; Li, R.; Zhang, W.; Li, A. Angew. Chem., Int.
Ed. 2013, 52, 9201−9204. (d) Riener, M.; Nicewicz, D. A. Chem. Sci.
2013, 4, 2625−2629. (e) Schnermann, M. J.; Overman, L. E. Angew.
Chem., Int. Ed. 2012, 51, 9576−9580. (f) Lu, Z.; Yoon, T. P. Angew.
Chem., Int. Ed. 2012, 51, 10329−10332. (g) Lin, S.; Ischay, M. A.; Fry, C.
G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350−19353. For an
extensive review on the use of photoredox catalysis in organic synthesis,
see: Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322−5363.
(2) For recent examples of the application of electrochemistry to
natural product synthesis, see: (a) Rosen, B. R.; Werner, E. W.; O’Brien,
A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571−5574. (b) Xu, H.-
C.; Brandt, J. D.; Moeller, K. D. Tetrahedron Lett. 2008, 49, 3868−3871.
(c) Hughes, C. C.; Miller, A. K.; Trauner, D. Org. Lett. 2005, 7, 3425−
3428. (d) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006, 35, 605−621.
(e) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2009,
108, 2265−2299. (f) Frontana-Uribe, B. S.; Little, R. D.; Ibanez, J. G.;
Palma, A.; Vasquez-Medrano, R. Green Chem. 2010, 12, 2099−2119.
For an extensive review on the application of electrochemistry to organic
synthesis, see: (g) Moeller, K. D. Tetrahedron 2000, 56, 9527−9554.
(h) Moeller, K. D. Synlett. 2009, 8, 1208−1218.
(3) For recent examples of the use of continuous flow chemistry for
natural product synthesis, see: Reference 1a and (a) Newton, S.; Carter,
C. F.; Pearson, C. M.; Alves, L. C.; Lange, H.; Thansandote, P.; Ley, S. V.
Angew. Chem., Int. Ed. 2014, 53, 4915−4920. (b) Fernan
Z. G.; Baumann, M.; Sulzar-Mosse, S.; Sparr, C.; Schlager, S.; Metzger,
A.; Baxendale, I. R.; Ley, S. V. Synlett 2013, 24, 514−518. (c) Lev
́
dez, A.; Levine,
́
̈
́
esque,
F.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51, 1706−1709.
(d) Oishi, T. J. Synth. Org. Chem. Jpn. 2012, 70, 1170−1177. (e) Kim, H.;
Nagaki, A.; Yoshida, J.-I. Nat. Commun. 2011, 2, 1−6. (f) Fuse, S.;
Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T. Chem.
Commun. 2010, 46, 8722−8724. For a review on the application flow
chemistry to natural product synthesis, see: (g) Pastre, J. C.; Browne, D.
L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8801−9198.
(16) For more detailed studies, see the Supporting Information (SI).
(17) (a) Maresh, J. J.; Giddings, L.-A.; Friedrich, A.; Loris, E. A.;
̈
̈
(4) Ustunes, L.; Ozer, A.; Laekeman, G. M.; Corthout, J.; Pieters, L. A.
̈
C.; Baeten, W.; Herman, A. G.; Claeys, M.; Vlietinck, A. J. J. Nat. Prod.
1991, 54, 959−966.
Panjikar, S.; Trout, B. L.; Stockigt, J.; Peters, B.; O’Connor, S. E. J. Am.
̈
Chem. Soc. 2008, 130, 710−723. (b) Pulka, K.; Misicka, A. Tetrahedron
(5) Gravel, E.; Poupon, E. Nat. Prod. Rep. 2010, 27, 32−56.
(6) (a) Davis, R. A.; Duffy, S.; Avery, V. M.; Camp, D.; Hooper, J. N. A.;
Quinn, R. J. Tetrahedron Lett. 2010, 51, 583−585. (b) Cesar, L. M. M.;
Tormena, C. F.; Marques, M. R.; Silva, G. V. J.; Mendes, M. A.; Rittner,
R.; Palma, M. S. Helv. Chim. Acta 2005, 88, 796−801.
(7) (a) Diker, K.; Biach, K. E.; de Maindreville, M. D.; Levy, J. J. Nat.
Prod. 1997, 60, 791−793. (b) Wanner, M. J.; Velzel, A. W.; Koomen, G.-
J. J. Chem. Soc., Chem. Comm. 1993, 174−175.
(8) For examples of combinatorial methods applied to amide
oxidations, see: (a) Yoshida, J.; Suga, S.; Suzuki, S.; Kinomura, N.;
Yamamoto, A.; Fujiwara, K. J. Am. Chem. Soc. 1999, 121, 9546−9549.
(b) Siu, T.; Li, W.; Yudin, A. K. J. Comb. Chem. 2000, 2, 545−549.
(c) Sun, H.; Martin, C.; Kesselring, D.; Keller, R.; Moeller, K. D. J. Am.
Chem. Soc. 2006, 128, 13761−13771.
2011, 67, 1955−1959.
(18) N-Boc deprotection of carbamates is fast. It is complete within 5
min at 50 °C in either methanol or water in the presence of CSA.
(19) As shown by 1H NMR.
(20) Full computational details of this are reported in the SI
(21) (a) Davidson, E. R. Chem. Phys. Lett. 1996, 260, 514−518.
(b) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10,
6615−6620. (c) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys.
Chem. B 2009, 113, 6378−6396.
(9) For some examples of continuous flow electrochemistry, see:
(a) Arai, K.; Wirth, T. Org. Process Res. Dev. 2014, DOI: 10.1021/
op500155f. (b) Watts, K.; Baker, A.; Wirth, T. J. Flow Chem. 2014, 4, 2−
11. (c) Arai, K.; Watts, K.; Wirth, T. ChemistryOpen 2014, 3, 23−28.
(d) Roth, G. P.; Stalder, R.; Long, T. R.; Sauer, D. R.; Djuric, S. W. J. Flow
Chem. 2013, 3, 34−40. (e) Stalder, R.; Roth, G. P. ACS Med. Chem. Lett.
2013, 4, 1119−1123. (f) Kashiwagi, T.; Amemiya, F.; Fuchigami, T.;
Atobe, M. Chem. Commun. 2012, 48, 2806−2808. (g) Kuleshova, J.;
Hill-Cousins, J. T.; Birkin, P. R.; Brown, R. C. D.; Pletcher, D.;
Underwood, T. J. Electrochim. Acta 2012, 69, 197−202. (h) Amemiya,
F.; Matsumoto, H.; Fuse, K.; Kashiwagi, T.; Kuroda, C.; Fuchigami, T.;
Atobe, M. Org. Biomol. Chem. 2011, 9, 4256−4265. (i) Kuleshova, J.;
D
dx.doi.org/10.1021/ol502201d | Org. Lett. XXXX, XXX, XXX−XXX