purification by filtration. However, the method suffers from
some serious disadvantages, such as reduced reactivity and
the inability to monitor the coupling reactions by TLC, NMR,
and mass spectrometry.
With the fluorous tag in hand, introduction and removal
of the Froc protecting group was explored.
To demonstrate the versatility and utility of the Froc
protecting group in peptide synthesis, we prepared the Gly-
Gly dipeptide and the bioactive peptide RGD. The peptides
were prepared following the general procedure shown in
Scheme 2. The amino acids were commercial or easily
We reasoned that a reducible fluorous protecting group
would be an attractive alternative tag for standard SPPS
(solid-phase peptide synthesis) and solid-phase carbohydrate
synthesis. Trichloethoxycarbonyl (Troc) is frequently used
in organic synthesis,17 especially where amino sugar deriva-
tives18 are involved. This is due to its stability under mild
acidic and basic conditions and its ease of removal under
specific conditions.18a-c,19 Accordingly, we set out to design,
synthesize and apply a fluorous version of the trichloethoxy-
carbonyl (Figure 1) protecting group for amines. The new
Scheme 2. General Scheme for the Peptide Synthesis Using
Froc as Amino Protecting Group
Figure 1. Troc protecting group and the Froc tag 1.
fluorous protecting group 1 was named Froc by analogy with
its nonfluorous Troc counterpart. The synthetic route for the
preparation of the fluorous tag 1 is shown in Scheme 1.
prepared from a commercial source. The first amino acid
was protected at the amino group with the freshly prepared
FrocCl to give the Froc-protected amino acid. As a proof of
concept, treatment of FrocHN-Gly-OMe with Zn/Ac2O/Et3N
quantitatively gave the AcHN-Gly-OMe derivative. With this
result in hand, we started the peptide synthesis. After every
step, it was possible to characterize all the intermediates,
and if starting materials were revealed, a second cycle of
reaction could be performed to drive the reaction to comple-
tion. Just like in solid-phase peptide synthesis, where an
Scheme 1. Synthesis of the FrocCl
(13) (a) Miura, T.; Hirose, Y.; Ohmae, M.; Inazu, T. Org. Lett. 2001, 3,
3947. (b) Miura, T.; Inazu, T. Tetrahedron Lett. 2003, 44, 1819. (c) Mizuno,
M.; Goto; Miura, T.; Hosaka, D.; Inazu, T. Chem. Commun. 2003, 972. (e)
Miura, T.; Goto, K.; Hosaka, D.; Inazu, T. Angew. Chem., Int. Ed. 2003,
42, 2047. (f) Mizuno, M.; Goto, K.; Miura, T.; Matsuura, T.; Inazu, T.
Tetrahedron Lett. 2004, 3425. (g) Miura, T.; Satoh, A.; Goto, K.; Muratami,
Y.; Imai, N.; Inazu, T. Tetrahedron: Asymmetry 2005, 16, 3.
(14) (a) Ro¨ver, S.; Wipf, P. Tetrahedron Lett. 1999, 40, 5667. (b)
Palmacci, E. R.; Hewitt, M. C.; Seeberger, P. H. Angew. Chem., Int. Ed.
2001, 40, 4433. (c) Seeberger, P. H. Chem Commun. 2003, 1115.
(15) Wipf, P.; Reeves, J. T. Tetrahedron Lett. 1999, 40, 5139.
(16) Goto, K.; Miura, T.; Mizuno, M. Tetrahedron Lett. 2005, 46, 8293.
(17) Green, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 3rd ed.; Wiley: New York, 1991.
(18) (a) Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt,
R. R. Carbohydr. Res. 1996, 296, 135. (b) Saha, U. K.; Schmidt, R. R. J.
Chem. Soc., Perkin Trans 1 1997, 1855. (c) Fukase, K.; Fukase, Y.; Oikawa,
M.; Liu, W.; Suda, Y.; Kusumoto, S. Tetrahedron 1998, 54, 4033. (d)
Ellervik, U.; Magnusson, G. Tetrahedron Lett. 1997, 38, 1627. (e) Mitchell,
S. A.; Pratt, M. R.; Hruby, V. J.; Polt, R. J. Org. Chem. 2001, 61, 2327. (f)
Mong, K. T.; Wong, C. H. Angew. Chem., Int. Ed. 2002, 41, 4087. (g)
Zhu, X.; Schmidt, R. R. Synthesis 2003, 8, 1262.
(19) (a) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer,
W.; Ramage, R.; Ranganathan, S.; Vorbru¨ggen, H. J. Am. Chem. Soc. 1966,
88, 852. (b) Just, G.; Grozinger, K. Synthesis 1976, 45. (c) Dong, Q.;
Anderson, C. E.; Ciufolini, M. A. Tetrahedron Lett. 1995, 36, 5681 and
references therein. (d) Tokimoto, H.; Fukase, K. Tetrahedron Lett. 2005,
46, 6831.
(20) Coudures, C.; Pastor, R.; Cambon, A. J. Fluorine Chem. 1984, 24,
93.
(21) 5 was reacted with BnNH2 to give the benzyl carbamate.
Alcohol 4 is obtained via a small modification of a pub-
lished protocol.20 In the first step, commercially available
1H,1H,2H,2H-perfluoro-1-decene 2 is treated with Hg(OAc)2
in the presence of Br2 in AcOH to give 3. The target
compound 5 is thereafter obtained in an excellent overall
yield (84%) by chloroformylation of 4.21
(7) (a) Filippov, V.; van Zoelen, D. J.; Oldfield, S. P.; van der Marel,
G. A.; Overkleeft, H. S.; Drijfhout, J. W.; van Boom, J. H. Tetrahedron
Lett. 2002, 43, 7809. (b) Curran, D. P.; Amatore, M.; Campbell, M.; Go,
E.; Luo, Z. Y. J. Org. Chem. 2001, 66, 4643. (c) Schwinn, D.; Bannwarth,
W. HelV. Chim. Acta 2002, 85, 255.
(8) Luo, Z. Y.; Williams, J.; Read, R. W.; Curran, D. P. J. Org. Chem.
2001, 66, 4261.
(9) Pardo, J.; Cobas, A.; Guitia´n, E.; Castedo, L. Org. Lett. 1998, 39,
4937.
(10) Curran, D. P.; Ferritto, R.; Hua, Y. Tetrahedron Lett. 1998, 39, 4937.
(11) Wipf, P.; Reeves, J. T. Tetrahedron Lett. 1999, 40, 4649.
(12) De Visser, P. C.; van Helden, M.; Filippov, D. V.; van der Marel,
G. A.; Drijfhout, J. W.; van Boom, J. H.; Noort, D.; Overkleeft, H. S.
Tetrahedron Lett. 2003, 44, 9013.
956
Org. Lett., Vol. 8, No. 5, 2006