plished either by using electrophilic bromination3 or by bromi-
nation of lithiated arenes with reagents such as bromine,4 NBS,5
Br2F4C2,6 or 1,2-dibromoethane.7
An Improved Method for the Bromination of
Metalated Haloarenes via Lithium, Zinc
Transmetalation: A Convenient Synthesis of
1,2-Dibromoarenes
While the above methods are commonly used to access a
wide array of brominated arenes, there are some limitations to
this methodology when applied to the synthesis of 1,2-
dibromoarenes. The electrophilic bromination of bromoarenes
has afforded mixtures of corresponding 1,4- and 1,2-dibro-
mides.8 The complimentary ortho-metalation reaction of bro-
moarenes with LDA or LiTMP9 has afforded the corresponding
ortho-lithiated bromoarenes with high selectivity and yield.
However, the subsequent bromination of the ortho-lithiated
species furnished 1,2-dibromoarenes in low to moderate yields.
A plausible explanation for the poor yields is depicted in Scheme
1.
Karsten Menzel,*,† Ethan L. Fisher,† Lisa DiMichele,‡
Doug E. Frantz,†,1 Todd D. Nelson,† and Michael H. Kress†
Merck Research Laboratories, Department of Process Research,
Merck & Co., Inc., 466 DeVon Park DriVe,
Wayne, PennsylVania 19087, and Merck Research Laboratories,
Department of Process Research, Merck & Co., Inc.,
126 E. Lincoln AVenue, Rahway, New Jersey 07065
It is well documented that the original deprotonation of 1,3-
bromochlorobenzene (1a) with LiTMP affords the lithiated
intermediate (2a),10 which is stable at -78 °C. Immediately after
bromine addition to this anion is initiated, the reaction mixture
contains both the desired product 4a and unreacted aryllithium
(2a) (pathway A, Scheme 1). It is our supposition that this yet
unreacted anion (2a) is basic enough to abstract a proton from
the newly generated 1,2-dibromoarene (4a).11 Consequently, the
desired 1,2-dibromo-3-chlorobenzene (4a) is contaminated with
polyhalogenated arene 612 and copious amounts of starting
material 1a.13 To support our hypothesis, we reacted 0.5 equiv
of 3-chloro-1,2-dibromo-3-chlorobenzene (4a) with 1.0 equiv
of pregenerated aryllithium (2a) for 1 h at -78 °C. A sample
of the reaction mixture was analyzed by GC/MS after a
subsequent quench of the reaction mixture with d4-acetic acid,
which indicated that deuterated 5 was formed.
ReceiVed December 6, 2005
A facile protocol for the synthesis of 1,2-dibromoarenes is
described. A standard ortho-lithiation/bromination procedure,
when applied to bromoarenes, resulted in poor yields of the
corresponding 1,2-dibromoarenes (13-62% yield). However,
transmetalation of the transient aryllithium intermediate to
an arylzinc species with ZnCl2, followed by bromination,
resulted in dramatically improved yields of the synthetically
useful 1,2-dibromoarenes (68-95% yield).
(3) (a) March, J. Aromatic Electrophilic Substitution. In AdVanced
Organic Chemistry, 4th ed.; Wiley & Sons: New York, 1992; pp 507-
511. (b) Cram, D. J.; Carmarck, R. A.; deGrandpre, M. P.; Lein, G. M.;
Goldberg, I.; Knobler, C. B.; Maverick, E. F.; Trueblood, K. N. J. Am.
Chem. Soc. 1987, 109, 7068.
(4) (a) Hudlicky, M.; Hudlicky, T. Formation of Carbon-Halogen Bond.
In Supplement D: The Chemistry of Halides, Pseudohalides and Azides;
Patai, S., Rappoport, Z., Eds.; The Chemistry of Functional Groups; Wiley
& Sons: Chichester, U.K., 1983; Chapter 22, pp 1021-1172. (b) Sasson,
Y. Formation of Carbon-Halogen Bonds (Cl, Br, I). In Supplements D2:
The Chemistry of Halides, Pseudohalides and Azides; Patai, S., Rappoport,
Z., Eds.; The Chemistry of Functional Groups; Wiley & Sons: Chichester,
U.K., 1995; Chapter 11, pp 535-628.
Polyhalogenated arenes are ubiquitous target molecules in
the field of material science and natural product syntheses.2 The
widespread utility of these subunits necessitates versatile and
convenient methods for their preparation. Traditionally, the
regioselective preparation of bromoarenes has been accom-
(5) (a) Mitchell, R. C.; Lai, Y.-H.; Williams, R. V. J. Org. Chem. 1979,
44, 4733. (b) Ando, W.; Tsumaki, H. Synthesis 1982, 263. (c) Townsend,
C. A.; Davis, S. G.; Christensen, S. B.; Link, J. C.; Lewis, C. P. J. Am.
Chem. Soc. 1981, 103, 6885. (d) Martina, S.; Enkelmann, V.; Wegner, G.;
Schluter, A.-D. Synthesis 1991, 613.
† Merck & Co., Inc., Wayne, Pennsylvania.
‡ Merck & Co., Inc., Rahway, New Jersey.
(1) Current address: Department of Biochemistry, University of Texas
Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-
9038.
(6) Wang, W.; Snieckus, V. J. Org. Chem. 1992, 57, 424.
(7) Miah, M. A. J.; Snieckus, V. J. Org. Chem. 1985, 50, 5436.
(8) (a) Ferguson, L. N.; Garner, A. Y.; Mack, J. L. J. Am. Chem. Soc.
1954, 76, 1250. (b) Cresp, T. M.; Giles, R. G. F.; Sargent, M. V. Chem.
Comm. 1974, 11. (c) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi,
K.; Horaguchi, T. Chem. Lett. 2003, 32, 932.
(9) (a) Heiss, C.; Schlosser, M. Eur. J. Org. Chem. 2003, 447. (b) Marull,
M.; Schlosser, M. Eur. J. Org. Chem. 2003, 1576. (c) Mongin, F.; Marzi,
E.; Schlosser, M. Eur. J. Org. Chem. 2001, 2771. (d) Schlosser, M.
Organometallics in Synthesis. A Manual, 2nd ed.; Wiley: Chichester, U.K.,
2002.
(10) Mongin, F.; Schlosser, M. Tetrahedron Lett. 1997, 38, 1559.
(11) Mallet, M.; Queguiner, G. Tetrahedron 1985, 41, 3433.
(12) (a) Polybrominated arene formation under strong basic conditions:
Schlosser, M. Angew. Chem., Int. Ed. 2005, 44, 376 and references therein.
(b) Mongin, F.; Desponds, O.; Schlosser, M. Tetrahedron Lett. 1996, 37,
2767.
(2) (a) Kohmoto, S.; Kashman, Y.; McConnell, O. J.; Rinehart, K. L.,
Jr.; Wright, A.; Koehn, F. J. Org. Chem. 1988, 53, 3116. (b) Utkina, N.
K.; Denisenko, V. A.; Scholokova, O. V.; Virovaya, M. V.; Gerasimenko,
A. V.; Popov, D. Y.; Krasokhin, V. B.; Popov, A. M. J. Nat. Prod. 2001,
64, 151. (c) Davis, R. A.; Carroll, A. R.; Quinn, R. J. J. Nat. Prod. 1998,
61, 959. (d) Sielcken, O. E.; van Tilborg, M. M.; Roks, M. F. M.; Hendriks,
R.; Drenth, W.; Nolte, R. J. M. J. Am. Chem. Soc. 1987, 109, 4261. (e)
Stock, C.; Hofer, F.; Bach, T. Synlett 2005, 511. (f) Schroter, S.; Stock, C.;
Bach, T. Tetrahedron 2005, 61, 2245. (g) Vorogushin, A. V.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 8146. (h) Yam, V. W.-W.;
Ko, C.-C.; Zhu, N. J. Am. Chem. Soc. 2004, 126, 12734. (i) Wenderski, T.;
Light, K. M.; Ogrin, D.; Bott, S. G.; Harlan, C. J. Tetrahedron Lett. 2004,
45, 6851. (j) Lautens, M.; Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437.
(k) Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 2000, 122, 6323. (l)
Luly, J.; Rapoport, H. J. Org. Chem. 1981, 46, 2745.
(13) All products have been identified by GC/MS.
10.1021/jo052515k CCC: $33.50 © 2006 American Chemical Society
Published on Web 02/08/2006
2188
J. Org. Chem. 2006, 71, 2188-2191