sequence included seven chemical steps, and we felt it could
be improved. We now disclose a shorter sequence of
reactions that starts with p-menthane-3-carboxaldehyde 1 and
generates, in five steps, amino acids or N-heterocycles,
depending on the method of cleavage, bearing a tertiary or
quaternary chiral carbon.
R2 * H). Contrary to azides, cyanates rearrange irreversibly
to the corresponding isocyanates because of the strength of
the carbonyl double bond. In addition, unlike the azide,
making the cyanate does not require displacing the stereo-
chemically pure alcohol (cf. alcohols 8), thus eliminating a
step that can potentially scramble stereochemistry.
The strategy is based on the stereospecific [3,3]-sigma-
tropic rearrangement of allylic cyanates 5 to allylic isocy-
anates 6 (Scheme 1, eq 2).8,9 In an earlier communication,
The sequence starts with the stereoselective preparation
of allylic alcohols 8 using either a trimethylaluminum-
catalyzed11 addition of vinyllithium (method A) or the direct
addition of vinylalanes12 (method B) to p-menthane-3-
carboxaldehyde 4 (Table 1). Either of these methods proceeds
Scheme 1. Stereocontrolled Formation of the C-N Bond
Table 1. Stereoselective Addition of Vinylmetals to 4
entry
R1
R2
product
yield of 8 (%)a
ratio 8:9b
1
2
3
4
5
6
H
H
H
Me
Me
Me
n-Pr
t-Bu
TMS
n-Pr
Ph
a
b
c
d
e
f
72
66
69
87
69
81
99:1
200:1
6:1c
30:1
49:1
24:1
we described the reversible [3,3]-sigmatropic rearrangement
of allylic azides 2 to give principally compound 3 thanks to
the steric bias provided by the menthyl fragment (Scheme
1, eq 1).10 However, substituents capable of conjugation such
as the phenyl group favored regioisomer 2, and in addition,
the method was not applicable to quaternary azides (3, R1,
Bn
a Isolated yield of pure 8. b Measured by GC against authentic material.
c Prepared without AlMe3 as additive.
(4) (a) Shirlin, D.; Gerhart, F.; Hornsperger, J. M.; Harmon, M.; Wagner,
I.; Jung, M. J. Med. Chem. 1988, 31, 30-36. (b) Zhelyaskov, D. K.; Levitt,
M.; Uddenfriend, S. Mol. Pharmacol. 1968, 4, 445-451. (c) Kiick, D. M.;
Cook, P. F. Biochemistry 1983, 22, 375-382.
with high stereoselectivity, providing allylic alcohols 8a-f
in good yields and excellent diastereomeric ratios. The
addition of vinyllithiums without AlMe3 as additive usually
proceeds with much lower selectivity (cf. entry 3). The
formation of the major alcohol 8 can be rationalized using
the Felkin-Anh model of addition to R-chiral carbonyls.13
The diastereomeric alcohols were easily separated by flash
chromatography in all cases to yield diastereomerically pure
allylic alcohols 8a-f.
Treatment of these allylic alcohols 8a-f with trichloro-
acetyl isocyanate in dichloromethane at 0 °C followed by
hydrolysis using potassium carbonate in an aqueous metha-
nolic solution provided the corresponding carbamates 11a-f
in excellent yields (88% to >99%).14 The carbamates 11a-f
were then treated with trifluoroacetic anhydride and triethyl-
amine in dichloromethane at 0 °C to generate the isocyanates
6a-f in only 10 min (Table 2), presumably via the
intermediacy of the corresponding cyanates 5a-f that
rearranged in situ. The lower-energy transition state 5A with
(5) For selected examples of the construction of chiral quaternary carbon
bearing nitrogen, see: (a) Shaw, S. A.; Alema´n, P.; Vedejs, E. J. Am. Chem.
Soc. 2003, 125, 13368-13369. (b) Garc´ıa Ruano, J. L; Alema´n, J.; Parra,
A. J. Am. Chem. Soc. 2005, 127, 13048-13054. (c) Ikeda, D.; Kawatsura,
M.; Uenishi, J. Tetrahedron Lett. 2005, 46, 6663-6666. (d) Carlier, P. R.;
Zhao, H.; DeGuzman, J.; Lam P. C.-H. J. Am. Chem. Soc. 2003, 125,
11482-11483. (e) Masaki,_ Y.; Arasaki, H.; Iwata, M. Chem. Lett. 2003,
32, 4-5. (f) Tanaka, M.; Oba, M.; Tamai, K.; Suemune, H. J. Org. Chem.
2001, 66, 2667-2673. R,R-Dialkylated-R-amino acids: (g) Cativiela, C.;
D.-de-Villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517-3599. (h)
Cativiela, C.; D.-de-Villegas, M. D. Tetrahedron: Asymmetry 2000, 11,
645-732. (i) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int.
Ed. Engl. 1996, 35, 2708-2748. (j) Wirth, T. Angew. Chem., Int. Ed. Engl.
1997, 36, 225-227. (k) M.-Manas, M.; Trepat, E.; Sebastian, R. M.;
Vallribera, A. Tetrahedron: Asymmetry 1999, 10, 4211-4224. (l) Berkow-
itz, D. B.; McFadden, J. M.; Sloss, M. K. J. Org. Chem. 2000, 65, 2907-
2918.
(6) Spino, C.; Godbout, C. J. Am. Chem. Soc. 2003, 125, 12106-12107.
(7) (a) Spino, C.; Beaulieu, C. Angew. Chem., Int. Ed. 2000, 39, 1930-
1932. (b) Spino, C.; Godbout, C.; Beaulieu, C.; Harter, M.; Mwene-Mbeja,
T. M.; Boisvert, L. J. Am. Chem. Soc. 2004, 126, 13312-13319.
(8) (a) Christophersen, C.; Holm, A. Acta Chem. Scand. 1970, 24, 1512-
1526. (b) Banert, K.; Groth, S. Angew. Chem., Int. Ed. Engl. 1992, 31,
866-868.
(9) During the course of our work a conceptually similar approach was
divulged; see: (a) Ichikawa, Y.; Yamauchi, E.; Isobe, M. Biosci. Biotechnol.
Biochem. 2005, 69, 939-943. (b) Ichikawa, Y.; Ito, T.; Isobe, M. Chem.
Eur. J. 2005, 11, 1949-1957. (c) Matsukawa, Y.; Isobe, M.; Kotsuki, H;
Ichikawa Y. J. Org. Chem. 2005, 70, 5339-5341. (d) Nishiyama, T.; Isobe,
M.; Ichikawa, Y. Angew. Chem., Int. Ed. 2005, 44, 4372-4375.
(10) Gagnon, D.; Lauzon, S.; Godbout, C.; Spino, C. Org. Lett. 2005, 7,
4769-4771.
(11) Spino, C.; Granger, M.-C.; Tremblay, M.-C. Org. Lett. 2002, 4,
4735-4737.
(12) Negishi, E.-I.; Kondalov, D. Y. Chem. Soc. ReV. 1996, 417-426.
(13) Mengel, A.; Reiser, O. Chem. ReV. 1999, 99, 1191-1223.
(14) Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4,
1109-1111.
940
Org. Lett., Vol. 8, No. 5, 2006