Rare Earth Metal Catalysts for Hydroamination
A R T I C L E S
Catalyst systems based on alkali and alkaline earth metals,2a-d,f,4
as well as early (groups 3-5, lanthanides and actinides)2i-m,5,6
and late (groups 8-10)2g,h,7 transition metals have been devel-
oped. Unfortunately, many of these systems can be applied only
to a limited set of substrates. Commonly, only activated alkenes
[e.g. alkenes with electron-withdrawing groups attached, vinyl
arenes, 1,3-dienes, or ring-strained alkenes], alkynes, or cer-
tain types of amines [e.g., anilines] can be applied. Rare earth
metals based catalyst systems are reactive toward simple
alkene substrates, predominantely in intramolecular reac-
tions.2l,8-10
was limited due to a facile epimerization process via reversible
protolytic cleavage of the metal cyclopentadienyl bond under
the reaction conditions of catalytic hydroamination.9b-e The
configuration of the hydroamination products was independent
of diastereomeric purity of the lanthanocene precatalysts,
requiring a catalyst redesign if the opposite enantiomer of the
hydroamination product is desired.9b
We therefore decided to develop hydroamination catalyst
systems based on non-cyclopentadienyl ligand sets,12 which
should have comparable catalytic activity to the lanthanocene
systems but should retain their configurational integrity under
the reaction conditions of catalytic hydroamination. Furthermore,
chiral non-cyclopentadienyl ligand sets are usually easily
accessible and can be readily modified.13 Increased interest in
this area in recent years has surfaced in several reports on non-
metallocene rare earth metal based catalyst systems14 for
enantioselective3b-d,15-17 hydroamination.
The first chiral rare earth metal based hydroamination
catalysts were reported by Marks and co-workers in 1992.9a,b,11
Although enantioselectivities of up to 74% ee were achieved,
the application of these C1-symmetric chiral ansa-lanthanocenes
(4) Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127,
2042.
(5) For some examples using actinide-based catalysts, see: (a) Straub, T.;
Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky, M.; Eisen, M. S.
Organometallics 2001, 20, 5017. (b) Wang, J.; Dash, A. K.; Kapon, M.;
Berthet, J.-C.; Ephritikhine, M.; Eisen, M. S. Chem. Eur. J. 2002, 8, 5384.
(c) Stubbert, B. D.; Stern, C. L.; Marks, T. J. Organometallics 2003, 22,
4836.
In our initial studies on biphenolate and binaphtholate rare
earth metal hydroamination catalysts16 we realized that sterically
demanding substituents in 3 and 3′ positions of the diolate ligand
are an indispensable requirement for a monomeric catalyst
structure and effective asymmetric induction. We therefore
anticipated that an increase in steric bulk of these substituents
would increase enantioselectivity. In this paper we report the
synthesis of 3,3′-bis(trisarylsilyl)-substituted binaphtholate rare
earth metal complexes and their application as hydroamination
catalysts.17 Schaverien reported the synthesis of similar binaph-
tholate alkyllanthanum complexes more than a decade ago,18
but their catalytic potential has remained unexplored to date.
(6) For some recent examples using group 4- and group 5-based catalyst
systems, see: (a) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem.
Soc. 2003, 125, 11956. (b) Knight, P. D.; Munslow, I.; O’Shaughnessy, P.
N.; Scott, P. Chem. Commun. 2004, 894. (c) Ackermann, L.; Kaspar, L.
T.; Gschrei, C. J. Org. Lett. 2004, 6, 2515. (d) Anderson, L. L.; Arnold, J.;
Bergman, R. G. Org. Lett. 2004, 6, 2519. (e) Ramanathan, B.; Keith, A.
J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957. (f) Heutling, A.;
Pohlki, F.; Doye, S. Chem. Eur. J. 2004, 10, 3059. (g) Pohlki, F.; Bytschkov,
I.; Siebeneicher, H.; Heutling, A.; Ko¨nig, W. A.; Doye, S. Eur. J. Org.
Chem. 2004, 1967. (h) Lorber, C.; Choukroun, R.; Vendler, L. Organo-
metallics 2004, 23, 1845. (i) Hoover, J. M.; Petersen, J. R.; Pikul, J. H.;
Johnson, A. R. Organometallics 2004, 23, 4614. (j) Gribkov, D. V.;
Hultzsch, K. C. Angew. Chem., Int. Ed. 2004, 44, 5542. (k) Bexrud, J. A.;
Beard, J. D.; Leitch, D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959. (l)
Kim, H.; Lee, P. H.; Livinghouse, T. Chem. Commun. 2005, 5205. (m)
Marcsekova´, K.; Wegener, B.; Doye, S. Eur. J. Org. Chem. 2005, 4843.
(n) Tillack, A.; Khedkar, V.; Jiao, H.; Beller, M. Eur. J. Org. Chem. 2005,
5001.
(7) For some recent examples using late transition metal catalyst systems,
see: (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546.
(b) Lo¨ber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
4366. (c) Lutete, L. M.; Kadota, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004,
126, 1622. (d) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig, J.
F. J. Am. Chem. Soc. 2003, 125, 5608. (e) Utsunomiya, M.; Hartwig, J. F.
J. Am. Chem. Soc. 2004, 126, 2702. (f) Vo, L. K.; Singleton, D. A. Org.
Lett. 2004, 6, 2469. (g) Tillack, A.; Khedkar, V.; Beller, M. Tetrahedron
Lett. 2004, 45, 8875. (h) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem.
Soc. 2005, 127, 1070. (i) Takaya, J.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 5756. (j) Yi, C. S.; Yun, S. Y.; Guzei, I. A. J. Am. Chem. Soc.
2005, 127, 5782. (k) Brunet, J.-J.; Chu, N. C.; Diallo, O. Organometallics
2005, 24, 3104. (l) Zulys, A.; Dochnahl, M.; Hollmann, D.; Lo¨hnwitz, K.;
Herrmann, J.-S.; Roesky, P. W.; Blechert, S. Angew. Chem., Int. Ed. 2005,
44, 7794.
(8) For hydroamination catalyzed by cyclopentadienyl rare earth metal
complexes see: (a) Gagne´, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989,
111, 4108. (b) Gagne´, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc.
1992, 114, 275. (c) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118,
9295. (d) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757. (e)
Gilbert, A. T.; Davis, B. L.; Emge, T. J.; Broene, R. D. Organometallics
1999, 18, 2125. (f) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks,
T. J. J. Am. Chem. Soc. 1999, 121, 3633. (g) Molander, G. A.; Dowdy, E.
D. J. Org. Chem. 1999, 64, 6515. (h) Arredondo, V. M.; McDonald, F. E.;
Marks, T. J. Organometallics 1999, 18, 1949. (i) Molander, G. A.; Dowdy,
E. D.; Pack, S. K. J. Org. Chem. 2001, 66, 4344. (j) Molander, G.; Pack,
S. K. Tetrahedron 2003, 59, 10581. (k) Molander, G. A.; Pack, S. K. J.
Org. Chem. 2003, 68, 9214.
(9) For asymmetric hydroamination catalyzed by cyclopentadienyl rare earth
metal complexes see: (a) Gagne´, M. R.; Brard, L.; Conticello, V. P.;
Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics 1992, 11,
2003. (b) Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne´, M. R.;
Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10241. (c) Douglass, M. R.;
Ogasawara, M.; Hong, S.; Metz, M. V.; Marks, T. J. Organometallics 2002,
21, 283. (d) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem. Soc.
2003, 125, 15878. (e) Ryu, J.-S.; Marks, T. J.; McDonald, F. E. J. Org.
Chem. 2004, 69, 1038.
(11) For reviews on the application of chiral rare earth metal catalysts in organic
synthesis, see: (a) Mikami, K.; Terada, M.; Matsuzawa, H. Angew. Chem.,
Int. Ed. 2002, 41, 3554. (b) Aspinall, H. C. Chem. ReV. 2002, 102, 1807.
(c) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002, 102, 2187. (d)
Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L. Chem. ReV.
2002, 102, 2227.
(12) For general reviews on the chemistry of cyclopentadienyl-free rare earth
metal complexes see: (a) Edelmann, F. T. Angew. Chem., Int. Ed. Engl.
1995, 34, 2466. (b) Edelmann, F. T.; Freckmann, D. M. M.; Schumann,
H. Chem. ReV. 2002, 102, 1851. (c) Piers, W. E.; Emslie, D. J. H. Coord.
Chem. ReV. 2002, 233-234, 131.
(13) Even simple modifications to the ligand structure of cyclopentadienyl ligands
can require tedious multistep procedures; see for example: (a) Halterman,
R. L. Chem. ReV. 1992, 92, 2, 965. (b) Halterman R. L. In Metallocenes;
Togni, A., Halterman, R. L., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1,
p 455.
(14) For achiral non-metallocene rare earth metal based hydroamination catalysts,
see: (a) Bu¨rgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics
1998, 17, 1452. (b) Bu¨rgstein, M. R.; Berberich, H.; Roesky, P. W. Chem.
Eur. J. 2001, 7, 3078. (c) Kim, Y. K.; Livinghouse, T.; Bercaw, J. E.
Tetrahedron Lett. 2001, 42, 2933. (d) Kim, Y. K.; Livinghouse, T. Angew.
Chem., Int. Ed. 2002, 41, 3645. (e) Kim, Y. K.; Livinghouse, T.; Horino,
Y. J. Am. Chem. Soc. 2003, 125, 9560. (f) Lauterwasser, F.; Hayes, P. G.;
Bra¨se, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234.
(g) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23,
2601. (h) Panda, T. K.; Zulys, A.; Gamer, M. T.; Roesky, P. W.
Organometallics 2005, 24, 2197. (i) Kim, J. Y.; Livinghouse, T. Org. Lett.
2005, 7, 4391. (j) Bambirra, S.; Tsurugi, H.; van Leusen, D.; Hessen, B.
Dalton Trans 2006, 1157.
(15) (a) O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K. M.;
Scott, P. Chem. Commun. 2003, 1770. (b) O’Shaughnessy, P. N.; Scott, P.
Tetrahedron Asymmetry 2003, 14, 1979. (c) Hong, S.; Tian, S.; Metz, M.
V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768. (d) Collin, J.; Daran,
J.-D.; Schulz, E.; Trifonov, A. Chem. Commun. 2003, 3048. (e)
O’Shaughnessy, P. N.; Gillespie, K. M.; Knight, P. D.; Munslow, I.; Scott,
P. Dalton Trans. 2004, 2251. (f) Kim, J. Y.; Livinghouse, T. Org. Lett.
2005, 7, 1737. (g) Collin, J.; Daran, J.-D.; Jacquet, O.; Schulz, E.; Trifonov,
A. Chem. Eur. J. 2005, 11, 3455.
(16) (a) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. Chem. Eur. J. 2003, 9,
4796. (b) Gribkov, D. V.; Hampel, F.; Hultzsch, K. C. Eur. J. Inorg. Chem.
2004, 4091.
(10) Most investigations utilizing rare earth metal catalysts have focused on
intramolecular hydroamination reactions, whereas the number of reports
on intermolecular hydroamination are limited, see: (a) Li, Y.; Marks, T.
J. Organometallics 1996, 15, 3770. (b) Ryu, J.-S.; Li, G. Y.; Marks, T. J.
J. Am. Chem. Soc. 2003, 125, 12584.
(17) A preliminary account of the results presented herein has been com-
municated, see: Gribkov, D. V.; Hultzsch, K. C. Chem. Commun. 2004,
730.
(18) Schaverien, C. J.; Meijboom, N.; Orpen, A. G. J. Chem. Soc., Chem.
Commun. 1992, 124.
9
J. AM. CHEM. SOC. VOL. 128, NO. 11, 2006 3749