M. L. Leathen, E. A. Peterson / Tetrahedron Letters 51 (2010) 2888–2891
2891
and trifluoroethanol led in all cases to ester byproducts in addition to
product 10a.
References and notes
10. (a) Lebel, H.; Leogane, O. Org. Lett. 2005, 7, 4107–4110; (b) Yukawa, Y.; Tsuno,
Y. J. Am. Chem. Soc. 1959, 81, 2007–2012; (c) Newman, M.; Gildenhorn, H. J. Am.
Chem. Soc. 1948, 70, 317–319; (d) Coleman, R. A.; Newman, M. S.; Garrett, A. B.
J. Am. Chem. Soc. 1954, 76, 4534–4538; (e) Fahr, E.; Neumann, L. Angew. Chem.
1965, 77, 591.
1. (a) Harwood, L. M. Polar Rearrangements; Oxford University Press: Oxford,
1992. p. 49; (b) Shioiri, T. Degradation Reactions. In Comprehensive Organic
Synthesis – Selectivity; Trost, B. M., Fleming, I., Eds.; Strategy & Efficiency in
Modern Organic Chemistry; Pergamon Press: New York, 1991; Vols. 6, 4.4, pp
795–828.
2. Ninomiya, K.; Sioiri, T.; Yamada, S. Tetrahedron 1974, 30, 2151–2157.
3. (a) Yamada, S.; Ninomiya, K.; Shioiri, T. Tetrahedron Lett. 1973, 26, 2343–2346;
(b) Ninomiya, K.; Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1974, 22, 1398–
1404; For an example of a benzylic substrate successfully used with DPPA see:
(c) Spino, C.; Tremblay, M.-C.; Gobdout, C. Org. Lett. 2004, 6, 2801–2804.
4. Lebel, H.; Leogane, O.; Huard, K.; Lectard, S. Pure Appl. Chem. 2006, 78, 363–375.
5. This byproduct was observed by LC–MS.
6. (a) Cimarelli, D.; Fratoni, D.; Palmieri, G. Synth. Commun. 2009, 39, 3184–3190;
(b) Kündig, E. P.; Meier, P. Helv. Chim. Acta 1999, 82, 1360–1370; (c) Corey, E. J.;
Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493–5495.
7. (a) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987,
52, 3174–3176; (b) Kagan, H. B.; Dang, T.-P. J. Am. Chem. Soc. 1972, 94, 6429–
6433; (c) Manimaran, T.; Wu, T.-C.; Klobucar, W. D.; Kolich, C. H.; Stahly, G. P.;
Fronczek, F. R.; Watkins, S. R. Organometallics 1993, 12, 1467–1470.
11. Lebel, H.; Leogane, O. Synthesis 2009, 1935–1940.
12. Although it is possible that rearrangement could be promoted by trace
amounts of HCl present in CHCl3, we found that the product was formed with
equal efficiency in base-washed CHCl3. The hydrogen-bonding capability of
CHCl3 could also be responsible, see: Huang, Y.; Rawal, V. H. J. Am. Chem. Soc.
2002, 124, 9662–9663.
13. Note that the majority of commercially purchased chloroform is stabilized
with added ethanol, even if unspecified. Ethanol can compete with other
alcohol nucleophiles to trap the isocyanate intermediate. We recommend
using anhydrous chloroform stabilized with amylenes to avoid this
complication.
14. See: Wiss, J.; Fleury, C.; Onken, U. Org. Process Res. Dev. 2006, 10, 349–353. and
references therein.
15. Although acyl azides are a widely used intermediate in organic synthesis, the
authors caution that low molecular weight acyl azides can be potentially
explosive if evaporated to dryness. See: Overman, L. E.; Jessup, P. J.; Petty, C. B.;
Roos, J. Org. Synth. 1980, 59, 1. On larger scale, the authors recommend partial
concentration of the acyl azide intermediate, followed by introduction of
MeOH.
8. As
a
control, we tested alternate Curtius conditions (refluxing 4-
methoxybenzoic acid, DPPA, Et3N, and MeOH or t-BuOH), which led to
numerous side products instead of rearrangement product 10a.
9. Attempts to increase the rate of conversion to 10a by addition of catalytic
HCl, and other more acidic alchohol solvents such as hexafluoroisopropanol