A R T I C L E S
Castarlenas et al.
Thus, the introduction of chelating isopropoxybenzylidene
ligand10a has led to a new type of very active phosphine-free
ruthenium-alkylidene catalysts (3) that can be easily recovered
after achievement of catalytic reaction.10 More recently, various
ruthenium-based metathesis catalysts have been prepared by
replacement of one or two chloride ligands.11
Despite the profit brought by these neutral ruthenium-
alkylidene derivatives, efforts still need to be made to prepare
readily accessible, active, and robust catalyst precursors in order
to improve the scope of applications and innovate in catalyst
or initiator designing. In this context, ruthenium-vinylidene12
or ruthenium-allenylidene13-16 derivatives, readily obtained
from easy-to-prepare or commercially available ruthenium
complexes and simple terminal alkynes or propargyl alcohols,
have been revealed as a valid alternative.
The ionic 18-electron ruthenium-allenylidene complexes of
formula [(η6-p-cymene)RuCl(dCdCdCAr2)(PR3)]X (4), gener-
ated from [RuCl(PR3)(p-cymene)]X and HCtCC(OH)Ar2,
promoted RCM of dienes and enynes13,15,16 as well as ROMP16
and provided an unprecedented example of the involvement of
allenylidenes in alkene metathesis. The catalytic mechanism
involves the initial decoordination of the η6-bound p-cymene
ligand.13,17,18 Kinetic and spectroscopic studies have revealed
that on thermal activation the ionic 18-electron allenylidene
complex 4 actually was progressively transformed into a
noncharacterized alkene metathesis catalytic species.19
(6) (a) Wallace, D. J. Angew. Chem., Int. Ed. 2005, 44, 1912. (b) Hercouet,
A.; Baudet, C.; Carboni, B. Tetrahedron Lett. 2004, 45, 8749. (c) Fustero,
S.; Bartolome´, A.; Sanz-Cervera, J. F.; Sa´nchez-Rosello´, M.; Garc´ıa-Soler,
J.; Ramirez de Arellano, C.; Fuentes, A. S. Org. Lett. 2003, 5, 2523. (d)
Lee, C. W.; Choi, T.-L.; Grubbs, R. H. J. Am. Chem Soc. 2002, 124, 3224.
(e) Osipov, S. N.; Artyushin, O. I.; Kolomiets, A. F.; Bruneau, C.; Picquet,
M.; Dixneuf, P. H. Eur. J. Org. Chem. 2001, 20, 3891. (f) Maier, M. E.
Angew. Chem., Int. Ed. 2000, 39, 2073. (g) Osipov, S.; Bruneau, C.; Picquet,
M.; Kolomiets, A. F.; Dixneuf, P. H. Chem. Commun. 1998, 2053.
(7) (a) Baughman, T. W.; Wagener, K. B. In Metathesis Polymerization;
Buchmeiser, M. K., Ed.; Advances in Polymer Science 176; Springer-Verlag
GmbH: Berlin, 2005; Chapter 1, pp 1-42. (b) Qin, H.; Chakulski, B. J.;
Rousseau, I. A.; Chen, J.; Xie, X. Q.; Mather, P. T.; Constable, G. S.;
Coughlin, E. B. Macromolecules 2004, 37, 5239. (c) Courchay, F. C.;
Sworen, J. C.; Wagener, K. B. Macromolecules 2003, 36, 8231.
(8) (a) Yang, X.; Gong, B. Angew. Chem., Int. Ed. 2005, 44, 1352. (b) Itami,
Y.; Marciniec, B.; Kubicki, M. Chem. Eur. J. 2004, 10, 1239. (c) Nakamura,
S.; Hirata, Y.; Kurosaki, T.; Anada, M.; Kataoka, O.; Kitagaki; S.;
Hashimoto, S. Angew. Chem., Int. Ed. 2003, 42, 5351. (d) Chatterjee, A.
K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360. (e) Tanaka, K.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc.
2003, 125, 10802. (f) Van Schalkwyk, C.; Vosloo, H. C. M.; du Plessis, J.
A. K. AdV. Synth. Catal. 2002, 344, 781.
Other ruthenium-allenylidenes, such as RuCl2(PCy3)2(dCd
CdCPh2)14f and [RuCl(NHC)(arene)dCdCdCAr2]X,14g have
led to moderate alkene metathesis catalytic activity. By contrast,
an attempt to make RuCl2(PPh3)2dCdCdCPh2 failed, but the
formation of an inert RuCl2(PPh3)2(ind) (ind ) 3-phenylinde-
nylidene) complex was observed instead.20 The displacement
of PPh3 by PCy3 actually afforded the active catalyst precursor
RuCl2(PCy3)2(ind) (5) that has displayed excellent performance
for a wide range of organic substrates21 and is now commercially
available.
Here we report the selective transformation of allenylidene
complexes 4 into alkene metathesis catalytic species. In the
presence of acid, these (arene)ruthenium-allenylidene com-
plexes in situ rearrange, via alkenylcarbyne intermediates [(η6-
p-cymene)RuCl(tCCHdCR2)(PR3)]X2, into (arene)ruthenium
indenylidene derivatives [(η6-arene)RuCl(ind)(PR3)]X (eq 1).
(9) (a) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001,
123, 749. (b) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem.
Soc. 2001, 123, 6543. For theoretical investigations on Ru-catalyzed olefin
metathesis mechanism, see: (c) Adlhart, C.; Chen, P. J. Am. Chem. Soc.
2004, 126, 3496. (d) Costabile, C.; Cavallo, L. J. Am. Chem. Soc. 2004,
126, 9592. (e) Fomine, S.; Martinez Vargas, S.; Tlenkopatchev, M. A.
Organometallics 2003, 22, 93.
(10) (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H.
J. Am. Chem. Soc. 1999, 121, 791. (b) Garber, S. B.; Kingsbury, J. S.;
Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168. (c)
Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dolgonos, G.;
Grela, K. J. Am. Chem. Soc. 2004, 126, 9318. (d) Yao, Q.; Zhang, Y. J.
Am. Chem. Soc. 2004, 126, 74. (e) van Veldhuizen, J. J.; Gillingham, D.
G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003,
125, 12502. (f) Zaja, M.; Connon, J.; Dunne, A. M.; Rivard, M.;
Buschmann, N.; Jiricek, J.; Blechert, S. Tetrahedron 2003, 59, 6545. (g)
Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 2403.
(11) (a) Conrad, J. C.; Parnas, H. H.; Snelgrove, J. L.; Fogg, D. E. J. Am. Chem.
Soc. 2005, 127, 11882. (b) Halbach, T. S.; Mix, S.; Fischer, D.; Maeschling,
S.; Krause, J. O.; Sievers, C.; Blerchert, S.; Nuyken, O.; Buchmeiser, M.
R. J. Org. Chem. 2005, 70, 4687. (c) Volland M. A. O.; Hansen, S. M.;
Rominger, F.; Hofmann, P. Organometallics 2004, 23, 800. (d) Conrad, J.
C.; Amoroso, D.; Czechura, P.; Yap, G. P. A.; Fogg, D. E. Organometallics
2003, 22, 3634. (e) Krause, J. O.; Lubbad, S.; Nuyken, O.; Buchmeiser,
M. R. AdV. Synth. Catal. 2003, 345, 996.
This new acid-promoted process allows the first direct observa-
tion of an allenylidene-to-indenylidene rearrangement that brings
a new light in allenylidene- and indenylidene-metal complex
(17) Release of the arene ligand has been described in ruthenium alkylidene-
free complexes of type (η6-p-cymene)RuX2L (L ) PR3, NHC) that could
be photochemically17 or thermally18 activated. (a) Delaude, L.; Demonceau,
A.; Noels, A. F. Chem. Commun. 2001, 986. (b) Hafner, A.; Mu¨hlebach,
A.; van der Schaaf, P. A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2121.
(18) (a) Castarlenas, R.; Esteruelas, M. A.; On˜ate, E. Organometallics 2005,
24, 4343. (b) Castarlenas, R.; Eckert M.; Dixneuf, P. H. Angew. Chem.,
Int. Ed. 2005, 44, 2576. (c) Castarlenas, R.; Alaoui-Abdallaoui, I.; Se´meril,
D.; Mernari, B.; Guesmi, S.; Dixneuf, P. H. New J. Chem. 2003, 27, 6. (d)
Delaude, L.; Szypa, M.; Demonceau, A.; Noels, A. F. AdV. Synth. Catal.
2002, 344, 749. (e) Se´meril, D.; Cle´ran, M.; Bruneau, C.; Dixneuf, P. H.
AdV. Synth. Catal. 2001, 343, 184. (f) Demonceau, A.; Stumpf, A. W.;
Saive, E.; Noels, A. F. Macromolecules 1997, 30, 3127.
(19) Bassetti, M.; Centola, F.; Se´meril, D.; Bruneau, C.; Dixneuf, P. H.
Organometallics 2003, 22, 4459.
(20) (a) Fu¨rstner, A.; Guth, O.; Du¨ffels, A.; Seidel, G.; Liebl, M.; Gabor, B.;
Mynott, R. Chem. Eur. J. 2001, 7, 4811. (b) Fu¨rstner, A.; Hill, A. F.; Liebl,
M.; Wilton-Ely, J. D. E. T. Chem. Commun. 1999, 601.
(21) (a) Dragutan, V.; Dragutan, I.; Verpoort, F. Platinum Metals ReV. 2005,
49, 33. (b) Schelper, B.; Glorius, F.; Fu¨rstner, A. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 11969. (c) Opstal, T.; Verpoort, F. Angew. Chem., Int.
Ed. 2003, 42, 2876. (d) Fu¨rstner, A.; Leitner, A. Angew. Chem., Int. Ed.
2003, 42, 308. (e) Fu¨rstner, A.; Jeanjean, F.; Razon, P. Angew. Chem., Int.
Ed. 2002, 41, 2097. (f) Fu¨rstner, A.; Radkowski, K.; Wirtz, C.; Goddard,
R.; Lehmann, C. W.; Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061. (g)
Opstal, T.; Verpoort, F. Synlett 2002, 935. (h) Fu¨rstner, A.; Thiell, O. R.
J. Org. Chem. 2000, 65, 1738. (i) Fu¨rstner, A.; Thiel O. R.; Ackermann
L.; Schanz, H.-J.; Nolan, S. P. J. Org. Chem. 2000, 65, 2204. (j) Fu¨rstner,
A.; Grabowski, J.; Lehmann, C. W. J. Org. Chem. 1999, 64, 8275.
(12) (a) Katayama, H.; Ozawa, F. Coord. Chem. ReV. 2004, 248, 1703. (b)
Opstal, T.; Verpoort, F. J. Mol. Catal. A: Chem. 2003, 200, 49. (c)
Katayama, H.; Yoshida, T.; Ozawa, F. J. Organomet. Chem. 1998, 562,
203.
(13) (a) Fu¨rstner, A.; Picquet, M.; Bruneau, C.; Dixneuf, P. H. J. Chem Soc.,
Chem. Commun. 1998, 1315. (b) Fu¨rstner, A.; Liebl, M.; Lehmann, C. W.;
Piquet, M.; Kunz, R.; Bruneau, C.; Touchard, D.; Dixneuf, P. H. Chem.
Eur. J. 2000, 6, 1847.
(14) (a) C¸ etinkaya, B.; Demir, S.; O¨ zdemir, I.; Toupet, L.; Se´meril, D.; Bruneau,
C.; Dixneuf, P. H. Chem. Eur. J. 2003, 9, 2323. (b) Akiyama, R.; Kobayashi,
S. Angew. Chem., Int. Ed. 2002, 41, 2602. (c) Le Gendre, P.; Picquet, M.;
Richard, P.; Mo¨ıse, C. J. Organomet. Chem. 2002, 663-664, 231. (d) Jung,
S.; Brandt, C. D.; Werner, H. New J. Chem. 2001, 25, 1101. (e) Saoud,
M.; Romerosa, A.; Peruzzini, M. Organometallics 2000, 19, 4005. (f)
Schanz, H.-J.; Jafarpour, L.; Stevens, E. D.; Nolan, S. P. Organometallics
1999, 18, 5187. (g) Jafarpour, L.; Huang, J.; Stevens, E. D.; Nolan, S. P.
Organometallics 1999, 18, 3760.
(15) (a) Se´meril, D.; Olivier-Bourbigou, H.; Bruneau, C.; Dixneuf, P. H. Chem.
Commun. 2002, 146. (b) Picquet, M.; Touchard, D.; Bruneau, C.; Dixneuf,
P. H. New J. Chem. 1999, 23, 141.
(16) (a) Csihony, S.; Fischmeister, C.; Bruneau, C.; Horvath, I. T.; Dixneuf, P.
H. New J. Chem. 2002, 26, 1667. (b) Castarlenas, R.; Se´meril, D.; Noels,
A. F.; Demonceau, A.; Dixneuf, P. H. J. Organomet. Chem. 2002, 663,
235.
9
4080 J. AM. CHEM. SOC. VOL. 128, NO. 12, 2006