C O M M U N I C A T I O N S
disrupts this packing arrangement in a manner that induces a larger
increase in volume compared with that of the o-linked dendron 3.
In conclusion, we have described a series of azobenzene dendrons
that adopt compact helical conformations in the E-azo form.
Photoisomerization disrupts this folded conformation in a manner
that decreases the packing efficiency and results in large structural
expansions. Folded photoresponsive materials provide an op-
portunity to investigate how local conformational fluctuations can
be correlated with global structural motions to maximize the
structural response to a triggering event.
Acknowledgment. This work was supported by the National
Science Foundation (Grant CHE-0239871).
1
Figure 3. 2D H-1H NOESY spectra of 4 and 5.
Table 1. Hydrodynamic Volumesa of E State (Dark) and at the
PSS
Supporting Information Available: Synthetic procedures and
characterization, NOESY and UV-vis spectra, and thermal Z f E
activation parameters/rates for 1-5; stereodepictions of lowest energy
conformers of 3 and 4. This material is available free of charge via the
darkc
irradiated at 350 nm
%Zb
UV
%Zb
NMR
Vv
Vh
Vh(PSS)
(Å3)
Vh/Vvw
(PSS)
compd
(Å3)
(Å3)
Vh/Vvw
Vh/Vh(PSS)
1a
1b
2
3
4
58
23
39
38
33
20
59
63
610
757 1.24
827
564
2056
1877
2632
5364
1.36
0.83
1.6
1.7
2.12
2.19
1.13 ( 0.035
0.52 ( 0.120
0.97 ( 0.045
1.32 ( 0.048
1.77 ( 0.140
1.47 ( 0.016
References
678 1076 1.59
41 1285 2228 1.73
38 1103 1371 1.24
53 1238 1496 1.21
2453 3666 1.49
(1) (a) Smith, D. K. Chem. Commun. 2006, 34-44. (b) Boas, U.; Heegaard,
P. M. H. Chem. Soc. ReV. 2004, 33, 43-63. (c) Svenson, S.; Tomalia, D.
A. AdV. Drug DeliV. ReV. 2005, 57, 2106-2129.
(2) (a) Li, S.; Szalai, M. L.; Kevwitch, R. M.; McGrath, D. V. J. Am. Chem.
Soc. 2003, 125, 10516-10517. (b) McGrath, D. V. Mol. Pharm. 2005, 2,
253-263.
5
a Determined by DOSY-NMR in CDCl3 (1.3 × 10-4 M) at 27 °C. These
conditions provided sharp, reproducible 1H NMR spectra consistent with
the presence of monomeric species in solution. b Measured in CDCl3 within
(3) (a) Ding, K.; Grebel-Koehler, D.; Berger, R.; Mullen, K.; Butt, H.-J. J.
Mater. Chem. 2005, 15, 3431-3436. (b) Ghosh, S.; Banthia, A. K.; Chen,
Z. Tetrahedron 2005, 61, 2889-2896. (c) Momotake, A.; Arai, T. Polymer
2004, 45, 5369-5390. (d) Jung, S. B.; Yang, K. S.; Yoo, S. Y.; Kwon,
Y. S.; Kim, C.; Lee, B. J. Mol. Cryst. Liq. Cryst. 2004, 425, 249-255.
(e) Kay, K.-Y.; Han, K.-J.; Yu, Y.-J.; Park, Y. D. Tetrahedron Lett. 2002,
43, 5053-5056. (f) Sidorenko, A.; Houphouet-Boigny, C.; Villavicencio,
O.; Hashemzadeh, M.; McGrath, D. V.; Tsukruk, V. Langmuir 2000, 16,
10569-10572. (g) Wang, X. S.; Wang, L. Li; Advincula, R. C. J. Org.
Chem. 2004, 69, 9073-9084. (h) Sebastian, R.-M.; Blais, J.-C.; Caminade,
A.-M.; Majoral, J.-P. Chem.sEur. J. 2002, 8, 2172-2183. (i) Archut,
A.; Azzellini, G. C.; Balzani, V.; Cola, L.; Voegtle, F. J. Am. Chem. Soc.
1998, 120, 12187-12191.
(4) Rau, H. Azo Compounds. In Studies in Organic Chemistry: Photo-
chromism. Molecules and Systems; Durr H., Bonas-Laurent, H., Eds.;
Elsevier: Amsterdam, The Netherlands, 1990; Vol. 40, pp 165-192.
(5) (a) Renner, C.; Kusebauch, U.; Loeweneck, M.;. Milbradt, A. G.; Moroder,
L. J. Pept. Res. 2005, 65, 4-14. (b) Pieroni, O.; Fissi, A.; Angelini, N.;
Lenci, F. Acc. Chem. Res. 2001, 34, 9-17. (c) Willner, I.; Rubin, S.
Angew. Chem., Int. Ed. Engl. 1996, 35, 367-385. (d) Ulysse, L.; Cubillos,
J.; Chmielewski, J. J. Am. Chem. Soc. 1995, 117, 8466-8467. (e) Clark,
T. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117, 12364-12365. (f)
Vollmer, M. S.; Clark, T. D.; Steinem, C.; Ghadiri, M. R. Angew. Chem.,
Int. Ed. Eng. 1999, 38, 1598-1601.
1
10 min of irradiation. PSS attained within 10 min for UV and 1 h for H
NMR experiments. c Dark incubated for 18 h at room temperature.
represent the π f π* absorptions before and after irradiation (Table
1). This formula assumes a neglible absorption of the Z isomer at
320/400 nm. Comparison of the Z isomer content, determined by
UV-vis and 1H NMR spectroscopy, at the PSS supports this
assumption for the o-linked dendrons 1a-3 and 5, but not for
m-linked dendrons 1b and 4. Overall, E f Z photoisomerism was
partially suppressed when the azo linkage was incorporated into
the folded dendron structure (e.g., 1a f 3, 1b f 4, and 2 f 5).
The Z f E thermal isomerization rates of 1-5 were in the range
of 10-5 s-1 at room temperature, and the barriers were relatively
invariant (∆Gq (298 K) ) 22.5-24.75 kcal/mol, see SI for ∆Hq
and ∆Sq), which indicates that the suppressed isomerization was
not due to faster thermal reversion to the E form at higher
generations. The suppression of photoisomerization at higher
dendron generation mirrors the behavior of helical azobenzene
oligomers and is likely a consequence of the compact, folded
structure of the dendrons.7
Comparison of the hydrodynamic radii (Vh) of 1-5, measured
by DOSY-NMR spectroscopy,17 to the calculated van der Waals
radii18 (Vvw) indicated the presence of compact conformational states
in the dark-incubated E forms (Table 1).19 Measured hydrodynamic
volumes of the ensemble of Z/E isomers at the PSS following
irradiation at 350 nm revealed that, whereas 1-2 exhibited either
a decrease or minimal increase in volume, the hydrodynamic
volumes of 3, 4, and 5 expanded by 32, 77, and 47%, respectively.
It is noteworthy that the amount of expansion increases with
generation (e.g., 3 and 5). The 47% expansion in the volume of 5
at the PSS is particularly significant given that only 20% of the
azo linkages existed in the Z form at the photostationary state. The
striking increase in photoexpansion going from the o- to m-
acylamino isomers, 3 and 4, is likely due to a difference in the
folding of E-isomers. Monte Carlo conformational searching (SI)
suggests that the o-linkage in 3 creates a helical conformation that
splays the dendritic branches at a 180° angle, whereas the m-linkage
in 4 orients the dendritic branches at a 14° angle that promotes
face-to-face packing of the dendritic surfaces. Photoisomerization
(6) (a) Cojocariu, C.; Rochon, P. Pure Appl. Chem. 2004, 76, 1479-1497.
(b) Kumar, G. S.; Neckers, D. C. Chem. ReV. 1989, 89, 1915-1925.
(7) (a) Tie, C.; Gallucci, J. C.; Parquette, J. R. J. Am. Chem. Soc. 2006, 128,
1162-1171. (b) Khan, A.; Kaiser, C.; Hecht, S. Angew. Chem., Int. Ed.
2006, 45, 1878-1881.
(8) (a) Li, S.; McGrath, D. V. J. Am. Chem. Soc. 2000, 122, 6795-6796. (b)
Liao, L.-X.; Junge, D. M.; McGrath, D. V. Macromolecules 2002, 35,
319-322. (c) Villavicencio, O.; McGrath, D. V. AdV. Dendritic Macromol.
2002, 5, 1-44.
(9) Grebel-Koehler, D.; Liu, D.; De Feyter, S.; Enkelmann, V.; Weil, T.;
Engels, C.; Samyn, C.; Muellen, K.; De Schryver, F. C. Macromolecules
2003, 36, 578-590.
(10) Liao, L.-X.; Stellacci, F.; McGrath, D. V. J. Am. Chem. Soc. 2004, 126,
2181-2185.
(11) (a) Lockman, J. W.; Paul, N. M.; Parquette, J. R. Prog. Polym. Sci. 2005,
30, 423-452. (b) Hofacker, A. L.; Parquette, J. R. Angew. Chem., Int.
Ed. 2005, 44, 1053-1057.
(12) Zhu, J.; Wang, X.-Z.; Chen, Y.-Q.; Jiang, X.-K.; Chen, X.-Z.; Li, Z.-T.
J. Org. Chem. 2004, 69, 6221-6227.
(13) Gabriel, C. J.; DeMatteo, M. P.; Paul, N. M.; Takaya, T.; Gustafson, T.
L.; Hadad, C. M.; Parquette, J. R. J. Org. Chem. 2006, in press.
(14) These transitions are similar to unsubstituted azobenzene: Griffiths, J.
Chem. Soc. ReV. 1972, 1, 481-483.
(15) Hirose, Y.; Yui, H.; Sawada, T. J. Phys. Chem. A 2002, 106, 3067-
3071.
1
(16) The Z-content of 5 could not be determined by H NMR because of the
complexity of the spectrum at the PSS.
(17) Young, J. K.; Baker, G. R.; Newkome, G. R.; Morris, K. F.; Johnson, C.
S. J. Macromolecules 1994, 27, 3464-3471.
(18) Calculated using Edward’s increments: Edward, J. T. J. Chem. Educ.
1970, 47, 261-270.
(19) Huang, B.; Prantil, M. A.; Gustafson, T. L.; Parquette, J. R. J. Am. Chem.
Soc. 2003, 125, 14518-14530.
JA066126Z
9
J. AM. CHEM. SOC. VOL. 128, NO. 42, 2006 13709