F.D. Sokolov et al. / Inorganica Chimica Acta 359 (2006) 2087–2096
2095
to 10 Dq-C (C is an interelectronic repulsion Racah
References
parameter) [37]. The estimated 10 Dq values for the com-
plexes M[PhNHC(S)NP(O)(OPr-i)2-N,S]2 (MII = NiII,
PdII) are close to those observed for the NiIIS4 and PdIIS4
cores [37].
[1] (a) N.G. Zabirov, F.M. Shamsevaleev, R.A. Cherkasov, Uspekhi
Khimii 60 (10) (1991) 2189;
(b) R.M. Kamalov, M.G. Zimin, A.N. Pudovic, Uspekhi Khimii 54
(12) (1985) 2044;
This provides the higher crystal field stabilization ener-
gies (CFSE) for the Ni[PhNHC(S)NP(O)(OPr-i)2-N,S]2
isomer and particularly Pd[PhNHC(S)NP(O)(OPr-i)2-
N,S]2 isomer with low-spin d8 configuration in comparison
to the corresponding M[PhNHC(S)NP(O)(OPr-i)2-O,S]2
species containing coordinated oxygen donor atoms.
(c) T.Q. Ly, J.D. Woollins, Coord. Chem. Rev. 176 (1998) 451.
[2] D.J. Birdsall, J. Green, T.Q. Ly, J. Novosad, M. Necas, A.M.Z.
Slawin, J.D. Woollins, Z. Zak, Eur. J. Inorg. Chem. 9 (1999) 1445.
[3] C. Silvestru, J.E. Drake, Coord. Chem. Rev. 223 (2001) 117.
[4] N.G. Zabirov, V.V. Brus’ko, S.V. Kashevarov, F.D. Sokolov, V.A.
Shcherbakova, A.Yu. Verat, R.A. Cherkasov, Russ. J. Gen. Chem. 8
(2000) 1214.
[5] N.G. Zabirov, F.M. Shamsevaleev, R.A. Cherkasov, Russ. J. Gen.
Chem. 60 (3) (1990) 464.
4. Conclusion
[6] T. Iwamoto, F. Ebina, H. Nakazawa, C. Nakatsuka, Bull. Chem.
Soc. Jpn. 52 (1979) 1857.
[7] Z. Zak, T. Gloviak, N.T.T. Chau, E.Z. Herrmann, Anorg. Allg.
Chem. 586 (7) (1990) 136.
[8] V.V. Brusko, A.I. Rakhmatullin, N.G. Zabirov, Russ. J. Gen. Chem.
10 (2000) 1603.
[9] N.G. Zabirov, I.A. Litvinov, O.N. Kataeva, S.V. Kashevarov, F.D.
Sokolov, R.A. Cherkasov, Russ. J. Gen. Chem. 9 (1998) 1408.
[10] N.G. Zabirov, V.N. Solov‘ev, F.M. Shamsevaleev, R.A. Cherkasov,
I.V. Martynov, Russ. J. Gen. Chem. 8 (1991) 1608.
[11] (a) K.R. Koch, C. Sacht, S. Bourne, Inorg. Chim. Acta 232 (1995)
109;
According to the discussion presented above, there are
two reasons for the higher stability of the M[PhNHC(S)-
NP(O)(OPr-i)2-N,S]2 isomers relatively to M[PhNHC(S)-
NP(O)(OPr-i)2-O,S]2 isomers (MII = NiII, PdII). One of
the reasons is the formation of intramolecular NHꢂ ꢂ ꢂO@P
hydrogen bonds. The other reason derives from the depro-
tonated NH group of PhNHCðSÞNPðOÞðOPr-iÞ2ðꢁÞ, which
is a powerful electron donor comparable to the deproto-
nated peptide bond nitrogen [38]. Stronger ligand field is
caused by the amide N(ꢁ) atom when compared to the oxy-
gen atom of P@O group. This determines higher crystal
field stabilization energies (CFSE) for the low-spin d8
M[PhNHC(S)NP(O)(OPr-i)2-N,S]2.
In the case of the Co[PhNHC(S)NP(O)(OPr-i)2-O,S]2
complex, the 1,5-O,S-coordination is realized for two rea-
sons: (i) as mentioned above, the steric hindrances associ-
ated with strong distortion of tetrahedral environment of
central ion inhibit the formation of 1,3-N,S-chelate; (ii)
CFSE for d7 configuration (CoII) is much lower than that
for the low-spin d8 configuration (NiII, PdII).
(b) R.A. Barley, K.l. Rothaupt, R.A. Kulling, Inorg. Chim. Acta 147
(1988) 233;
(c) A. Irving, K.R. Koch, M.C. Matoetoe, Inorg. Chim. Acta 206
(1993) 193;
(d) K.R. Koch, M.C. Matoetoe, Magn. Reson. Chem. 29 (1991)
1158;
(e) V.G. Fitzl, L. Beyer, J. Sieler, R. Richter, J. Kaiser, E. Hoyer, Z.
Anorg. Allg. Chem. 433 (1977) 237;
(f) K.R. Koch, J. Toit, M.R. Caira, C. Sacht, J. Chem. Soc., Dalton
Trans. 5 (1994) 785;
(g) K.R. Koch, C. Sacht, T. Grimmbacher, S. Bourne, S.Afr. J.
Chem. 48 (1/2) (1994) 71.
[12] F.D. Sokolov, N.G. Zabirov, A.Yu. Verat, L.N. Yamalieva, D.B.
Krivolapov, I.A. Litvinov (in preparation).
[13] A.L. Konkin, V.G. Shtyrlin, N.G. Zabirov, A.V. Aganov, L.E.
Zapechelnyuk, S.V. Kashevarov, A.V. Zakharov, Russ. J. Inorg.
Chem. 41 (7) (1996) 1107.
[14] N.G. Zabirov, V.N. Solov’ev, F.M. Shamsevaleev, R.A. Cherkasov,
A.N. Chekhlov, A.G. Tsyfarkin, I.V. Martynov, J. Gen. Chem.
USSR 3.2 (1991) 597.
[15] F.D. Sokolov, D.A. Safin, N.G. Zabirov, L.N. Yamalieva,
D.B. Krivolapov, I.A. Litvinov, Mendeleev Commun. 14 (2)
(2004) 51.
[16] B.I. Khairutdinov, V.G. Shtyrlin, A.Yu. Verat, F.D. Sokolov, N.G.
Zabirov, L.N. Yamalieva, V.V. Klochkov, Coll. Articles ‘‘Structure
and Dynamics of Molecular Systems’’ (Yalchik-2002), Moscow-
Kazan-Yoshkar-Ola, 2003, N.10, part. 3, p. 269.
[17] A.M.Z. Slawin, M.B. Smith, J.D. Woollins, Polyhedron 17 (25)
(1998) 4465.
[18] A. Silvestru, D. Bilc, R. Rosler, J.E. Drake, I. Haiduc, Inorg. Chim.
Acta 305 (2000) 106.
[19] P.Z. Zak, M. Fofana, J. Kamenicek, T. Glowiak, Acta. Crystallogr.,
Sect. C 45 (1989) 1686.
Thus, the structure of N-thioacylamidophosphinate (2)
complexes with NiII and PdII strongly depends on the nat-
ure of the substituents at –C(S)NHP(O)< fragment. An
electron withdrawing effect of phenyl at the thioamide
ligand HQ and the absence of intramolecular hydrogen
bonds prevent the 1,3-N,S chelate formation in this case
[12,16].
Acknowledgements
This work was supported by the Russian Foundation
for Basic Research (Grant Nos. 03-03-32372-a, 03-03-
96225-r2003tatarstan_a), the joint program of CRDF and
the Russian Ministry of Education (BHRE 2004 Y2-C-
07-02), and grant of the Russian Ministry of Education
SPGA (Code A03-2.9-562). Felix Sokolov thanks Faculty
of Chemistry of University of Wroclaw for scholarship.
[20] M. Necas, M.R.S.J. Foreman, J.J. Marek, J.D. Woollins, J. Novosad,
New J. Chem. 25 (2001) 1256.
[21] P. Bhattacharyya, A.M.Z. Slawin, J.D. Woollins, J. Chem. Soc.,
Dalton Trans. 10 (2000) 1545.
Appendix A. Supplementary data
Supplementary data associated with this article can be
[22] K.R. Koch, Coord. Chem. Rew. 216–217 (2001) 473.
[23] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solutions,
University of Go¨ttingen, Germany, 1997.