N. Kutsumura, S. Nishiyama / Tetrahedron Letters 46 (2005) 5707–5709
5709
Scheme 5. Reagents and conditions: (a) (i) LiBH4/THF; (ii) m-CPBA, NaHCO3/CH2Cl2, 70% in two steps; (iii) TPAP, NMO/CH2Cl2, 76%; (iv)
Ph3P@CHCO2Me/benzene, 100%. (b) (i) DDQ/CH2Cl2–H2O (20:1), 86%; (ii) dimetylcarbamyl chloride, NaH/DMF, 65%. (c) BF3ÆOEt2/CH2Cl2,
36%.
Kihara, T.; Isono, K. J. Antibiot. 1983, 36, 1263; (d)
Kihara, T.; Ubukata, M.; Uzawa, J.; Isono, K. J. Antibiot.
1989, 42, 919–925.
induction have been unsuccessful. For instance, a route
via asymmetric dihydroxylation provided insufficient re-
sults (no reaction by AD mix and a 3:1 mixture in 40%
yield by OsO4–Me3NO). An alternative route via asym-
metric epoxidation was ruled out, because of difficulties
in the following epoxide ring opening. As we considered
these results could be accounted for by steric hindrance
of the PMB group at the C7 position, subsequently its
removal was undertaken (Scheme 5). Thus, the carbon-
chain elongation of 17 was accomplished by LiBH4
reduction and mCPBA epoxidation,12 followed by
TPAP oxidation and the Wittig olefination, exclusively
leading to 18. The PMB group of 18 was removed with
DDQ, followed by dimethyl carbamation to afford 5. At
the final stage, exposure of the dimethyl carbamyl epox-
ide 5 to BF3ÆOEt2 at room temperature gave the desired
polyol subunit cyclic carbonate 19,13 which possessed
the same carbon framework (C1–C16) as that of 1.
The newly introduced stereochemistry at C4 and 5 of
19 was determined by the NOE experiments (Scheme 5).
3. (a) Chamberlin, J. W.; Gorman, M.; Agtarap, A. Biochem.
Biophys. Res. Commun. 1969, 34, 448–453; (b) Prouty, W.
F.; Thompson, R. M.; Schnoes, H. K.; Strong, F. M.
Biochem. Biophys. Res. Commun. 1971, 44, 619–627; (c)
Von Glehn, M.; Norrestam, R.; Kierkegaard, P.; Maron,
L.; Ernster, L. FEBS Lett. 1972, 20, 267–269; (d) Carter,
G. T. J. Org. Chem. 1986, 51, 4264–4271; (e) Kobayashi,
K.; Nishino, C.; Ohya, J.; Sato, S.; Mikawa, T.; Shiobara,
Y.; Kodama, M.; Nishimoto, M. J. Antibiot. 1987, 40,
1053–1057.
4. Kirst, H. A.; Larsen, S. H.; Paschal, J. W.; Occolowitz, J.
L.; Creemer, L. C.; Rios Steiner, J. L.; Lobkovsky, E.;
Clardy, J. J. Antibiot. 1995, 48, 990–996.
5. (a) Thompson, R. Q.; Hoehn, M. M.; Higgins, C. E.
Antimicrob. Agents Chemother. 1962, 474–480; (b)
Wuthier, V. D.; Keller-Schierlein, W. Helv. Chim. Acta
1984, 67, 1206–1208.
6. (a) Salomon, A. R.; Voehringer, D. W.; Herzenberg, L.
A.; Khosla, C. P. Natl. Acad. Sci. U.S.A. 2000, 97, 14766–
14771; (b) Salomon, A. R.; Voehringer, D. W.; Herzen-
berg, L. A.; Khosla, C. Chem. Biol. 2001, 8, 71–80.
7. Sato, K.; Kubo, K.; Hong, N.; Kodama, H.; Yoshimura,
J. J. Bull. Chem. Soc. Jpn. 1982, 55, 938–942.
8. Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990–
2016.
9. For Swern oxidation of primary silyl ethers selectively,
In conclusion, the asymmetric synthesis of the polyol
subunit 19 of 1 was accomplished in a stepwise carbon
chain construction manner. We believe that this C1–
C16 polyol subunit would be a useful synthetic interme-
diate for the total synthesis of ossamycin.
´
Rodrıguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J. J.
Tetrahedron Lett. 1999, 40, 5161–5164.
Acknowledgements
10. (a) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron 1984,
40, 2247–2255; (b) Houk, K. N.; Moses, S. R.; Wu, Y.-D.;
Rondan, N. G.; Ja¨ger, V.; Schohe, R.; Fronczek, F. R. J.
Am. Chem. Soc. 1984, 106, 3880–3882; (c) Haller, J.;
Strassner, T.; Houk, K. N. J. Am. Chem. Soc. 1997, 119,
8031–8034.
This work was supported by Grant-in-Aid for the 21st
Century COE program ꢀKeio Life Conjugate Chemistryꢁ,
as well as Scientific Research C from the Ministry of Edu-
cation, Culture, Sports, Science, and Technology, Japan.
11. (a) Johnson, M. R.; Nakata, T.; Kishi, Y. Tetrahedron
Lett. 1979, 20, 4343–4346; (b) Lipshutz, B. H.; Wilhelm,
R. S.; Kozlowski, J. Tetrahedron Lett. 1982, 23, 3755–
3768; (c) Tius, M. A.; Fauq, A. H. J. Org. Chem. 1983, 48,
4131–4132; (d) Chong, J. M.; Cyr, D. R.; Mar, E. K.
Tetrahedron Lett. 1987, 28, 5009–5012.
12. Maruyama, K.; Ueda, M.; Sasaki, S.; Iwata, Y.; Miyaz-
awa, M.; Miyashita, M. Tetrahedron Lett. 1998, 39, 4517–
4520.
References and notes
1. (a) Schmitz, H.; Jubinski, S. D.; Hooper, I. R.; Crook, K.
E., Jr.; Price, K. E.; Lein, J. J. Antibiot. 1965, 18, 82–88;
(b) Kirst, H. A.; Mynderse, J. S.; Martin, J. W.; Baker, P.
J.; Paschal, J. W.; Rios Steiner, J. L.; Lobkovsky, E.;
Clardy, J. J. Antibiot. 1996, 49, 162–167.
2. (a) Kihara, T.; Kusakabe, H.; Nakamura, G.; Sakurai, T.;
Isono, K. J. Antibiot. 1981, 34, 1073–1074; (b) Sakurai, T.;
Kihara, T.; Isono, K. Acta Cryst. 1983, C39, 295–297; (c)
13. Bravo, F.; McDonald, F. E.; Neiwert, W. A.; Do, B.;
Hardcastle, K. I. Org. Lett. 2003, 5, 2123–2126.