Scheme 2. Stereoselective Synthesis of Enantiomerically Pure
â-Amino or R,â-Diamino Esters
Scheme 3. Synthesis of (S)-R-Azido-â-N,N-dibenzylamino
Propionate 5a
The ability of the N,N-dibenzyl group to shield the R-CH
of R-amino acid from deprotection has been amply demon-
strated9 and a variety of N,N-dibenzyl amino aldehydes,
including serinal,10 have been synthesized. We document
herein that N,N-dibenzyl-O-methylsulfonyl serine methyl
ester (4) is a stable R,â-alanyl double cation synthon. It reacts
with a variety of heteronucleophiles (NaN3, sodium phthal-
imide, amine, thiol) and carbanions (sodium malonate) to
afford, via an aziridinium intermediate, the corresponding
â-amino ester or R,â-diamino ester (5) in good to excellent
yield (Scheme 2).
Compound D-4 was obtained in 80% isolated yield by
mesylation of the readily available D-N,N-dibenzyl serine
methyl ester (6)10b under classic conditions (MsCl, Et3N, CH2-
Cl2, rt, Scheme 3). We stress that formation of the chloro
amine resulting from the attack of the chloride ion on the
mesylate 4 was not observed.11 Compound D-4 in its pure
form is stable at room temperature and can be stored for
weeks in a refrigerator without detectable degradation.12 This
highly desirable stability can be ascribed to the bulky
N-protecting group that protects the compound from the
â-elimination as well as from the formation of aziridinium.13
As a prototypical transformation, reaction of 4 with sodium
azide was first examined (Scheme 3). Under optimized
conditions (MeCN/DMF ) 4/1, 60 °C), a single product was
isolated in 90% yield whose structure was determined to be
(S)-methyl R-azido-â-N,N-dibenzyl propionate (5a). Methyl
N,N-dibenzyl-â-azido alanate (7a) resulting from the formal
direct nucleophilic substitution of mesylate by azide was not
detected in the crude product by 1H NMR analysis (Scheme
3). The formation of N,N-dibenzyl aziridinium-2-carboxylate
8 followed by regioselective ring opening by an SN2 process
could explain the formation of 5a.
The structure of 5a was determined by its transformation
to the known compound 11 (Scheme 4). Staudinger reduction
Scheme 4. Structural Determination of Compound 5a
(5) (a) Cherney, R. J.; Wang, L. J. Org. Chem. 1996, 61, 2544-2546.
(b) Lu, H. S. M.; Volk, M.; Kholodenko, Y.; Gooding, E.; Hochstrasser,
R. M.; DeGrado, W. F. J. Am. Chem. Soc. 1997, 119, 7173-7180. See
also: (c) Koskinen, A. M. P.; Rapoport, H. J. Org. Chem. 1989, 54, 1859-
1866. (d) Atfani, M.; Lubell, W. D. J. Org. Chem. 1995, 60, 3184-3188.
(6) (a) Dugave, C.; Menez, A. J. Org. Chem. 1996, 61, 6067-6070. (b)
Dugave, C.; Menez, A. Tetrahedron: Asymmetry 1997, 8, 1453-1465. (c)
Mustapa, M. F. M.; Harris, R.; Bulic-Subanovic; Elliott, S. L.; Bregant, S.;
Groussier, M. F. A.; Mould, J.; Schutz, D.; Chubb, N. A. L.; Gaffney, P.
R. J.; Driscoll, P. C.; Tabor, A. B. J. Org. Chem. 2003, 68, 8185-8192.
(d) Bregant, S.; Tabor, A. B. J. Org. Chem. 2005, 70, 2430-2438.
(7) Panda, G.; Rao, N. V. Synlett 2004, 714-716.
(8) Other â-alanyl cation synthons: Serine â-lactone: (a) Arnold, L. D.;
May, R. G.; Vederas, J. C. J. Am. Chem. Soc. 1988, 110, 2237-2241. Cyclic
sulfamidates, see: (b) Baldwin, J. E.; Spivey, A. C.; Schofield, C. J.
Tetrahedron: Asymmetry 1990, 1, 881-884. Aziridine 2-carboxylate, for
selected examples see: (c) Nakajima, K.; Tanaka, T.; Morita, K.; Okawa,
K. Bull. Chem. Soc. 1980, 53, 283-284. (d) Baldwin, J. E.; Adlington, R.
M.; O’Neil, I. A.; Schofield, C.; Spivey, A. C.; Sweeney, J. B. J. Chem.
Soc. Chem. Chem. 1989, 1852-1854. (e) Dauban, P.; Dubois, L.; Tran
Huu Dau, M. E.; Dodd, R. H. J. Org. Chem. 1995, 60, 2035-2043. For
recent reviews on the aziridine chemistry, see: (f) McCoull, W.; Davis, F.
A. Synthesis 2000, 10, 1347-1365. (g) Hu, X. E. Tetrahedron 2004, 60,
2701-2743. (h) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599-
619. (i) Sweeney, J. B. Chem. Soc. ReV. 2002, 31, 247-258.
of azide gave the diamine 9 in 83% yield. Protection of the
resulting primary amine as tert-butyloxycarbamate gave 10.
The observed NH-CHR correlation in the COSY spectrum
of 10 is in accord with the structure of 5a. Finally, removal
of the N-benzyl group under hydrogenolysis conditions
afforded the known (S)-NR-Boc â-amino-alanine methyl ester.
To further confirm the assignment of the stereochemistry of
5a, both (S)- and (R)-O-methylmandelic acid derivatives 12
and 13 were synthesized. The calculated chemical shift
(9) Reetz, M. T. Chem. ReV. 1999, 99, 1121-1162.
(10) (a) Laib, T.; Chastanet, J.; Zhu, J. Tetrahedron Lett. 1997, 38, 1771-
1772. (b) Laib, T.; Chastanet, J.; Zhu, J. J. Org. Chem. 1998, 63, 1709-
1713. (c) Andre´s, J. M.; Pedrosa, R. Tetrahedron 1998, 54, 5607-5616.
(d) East, S. P.; Shao, F.; Williams, F.; Jouille´, M. M. Tetrahedron 1998,
54, 13371-13390.
(11) See for example: (a) Gmeiner, P.; Junge, D.; Ka¨rtner, A. J. Org.
Chem. 1994, 59, 6766-6776. (b) Chuang, T.-H.; Sharpless, K. B. Org.
Lett. 2000, 2, 3555-3557. (c) Chuang, T.-H.; Sharpless, K. B. Org. Lett.
1999, 1, 1435-1437.
(12) Certain mesylates derived from N,N-dibenzyl amino alcohol can
be purified by low-temperature flash chromatography, see: Thomas, C.;
Orecher, F.; Gmeiner, P. Synthesis 1998, 1491-1496.
differences [∆δArCH NBn (12-13)) ) -0.09 ppm; ∆δCO2Me(12-13)
)
2
2
0.04 ppmp] were indicative of the S configuration of
(13) (a) Lubell, W.; Rapoport, H. J. Org. Chem. 1989, 54, 3824-2831.
(b) Temal-la¨ıb, T.; Chastanet, J.; Zhu, J. J. Am. Chem. Soc. 2002, 124,
583-590.
2184
Org. Lett., Vol. 8, No. 10, 2006