Journal of Chemical and Engineering Data, Vol. 51, No. 4, 2006 1279
liquid, 1-methyl-3-octyl-imidazolium chloride from gas-liquid chro-
matography. J. Chem. Thermodyn. 2003, 35, 1335-1341.
(7) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic Properties
of mixtures containing ionic liquids. 1. Activity coefficients at infinite
dilution of alkanes, alkenes and alkylbernzenes in 4-methyl-n-
butylpyridinium tetrafluoroborate using gas-liquid chromatography.
J. Chem. Eng. Data 2001, 46, 1526-1529.
(8) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties
of mixtures containing ionic liquids. 2. Activity coefficients at infinite
dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-
imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-
3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-
liquid chromatography. J Chem. Eng. Data 2002, 47, 894-899.
(9) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties
of mixtures containing ionic liquids. Activity coefficients at infinite
dilution of polar solvents in 4-methyl-N-butyl-pyridinium tetrafluo-
roborate using gas-liquid chromatography. J. Chem. Thermodyn.
2002, 34, 1341-1347.
(10) Letcher, T. M.; Marciniak, A.; Marciniak, M.; Domanska, U. Deter-
mination of activity coefficients at infinite dilution of solutes in the
ionic liquid 1-butyl-3-methylimidazolium octyl sulfate using gas-
liquid chromatography at a temperature of 298.15 K, 313.15 K, or
328.15 K. J. Chem. Eng. Data 2005, 50, 1294-1298.
(11) Heintz, A.; Martinez Casa’s, L.; Nesterov, I. A.; Emel’yanenko, V.
N.; Verevkin, S. P. Thermodynamic properties of mixtures containing
ionic liquids. 5. Activity coefficients at infinite dilution of hydrocarbons
alcohols, ester and aldehydes in 1-methyl-3-butyl-imidazolium bis-
(trifluoromethyl-sulfonyl) imide using gas-liquid chromatography. J.
Chem. Eng. Data 2005, 50, 1510-1514.
(12) Heintz, A.; Verevkin, S. P. Thermodynamic properties of mixtures
containing ionic liquids. 6. Activity coefficients at infinite dilution of
hydrocarbons, alcohols, ester and aldehydes in 1-methyl-3-octylimi-
dazolium tetrafluoroborate using gas-liquid chromatography. J. Chem.
Eng. Data 2005, 50, 1515-1519.
(13) Deenadayalu, N.; Letcher, T. M.; Reddy, P. Determination of activity
coefficients at infinite dilution of polar and nonpolar solutes in the
ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)
imidate using gas-liquid chromatography at the temperature 303.15
K or 318.15 K. J. Chem. Eng. Data 2005, 50, 105-108.
(17) Poole, C. F.; Poole, S. K. Column selectivity from the perspective of
the solvation parameter model. J. Chromatogr. A 2002, 965, 263-
299.
(18) Abraham, M. H.; Poole, C. F.; Poole, S. K. Classification of stationary
phases and other materials by gas chromatography. J. Chromatogr. A
1999, 842, 79-114.
(19) Abraham, M. H.; Grellier, P. L.; McGill R. A. Determination of olive
oil-gas and hexadecane-gas partition coefficients, and calculation
of the corresponding olive oil-water and hexadecane-water partition
coefficients. J. Chem. Soc. Perkin Trans. 2 1987, 797-803.
(20) Abraham, M. H. Scales of solute hydrogen-bonding: their construction
and application to physicochemical and biochemical processes. Chem.
Soc. ReV. 1993, 22, 73-83.
(21) Abraham, M. H.; Whiting, G. S.; Doherty R. M. Hydrogen bonding.
Part 13. A new method for the characterization of GLC stationary
phasessthe Lafford data set. J. Chem. Soc. Perkin Trans. 2 1990,
1451-1460.
(22) Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J.
Hydrogen bonding. XVI. A new solute solvation parameter, π2H, from
gas chromatographic data. J. Chromatogr. 1991, 587, 213-228.
(23) Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. The use of gas-
liquid chromatography to determine activity coefficients and second
virial coefficients of mixtures. Proc. R. Soc. London 1966, A295, 259-
270.
(24) Grant, D. W. Gas-Liquid Chromatography; van Nostrand Reinhold:
London, 1971.
(25) Thermodynamics Research Center, Texas Engineering Experiment
Station, The Texas A & M University System, College Station, April
1987.
(26) Tsonopoulos, C. Empirical correlation of second virial coefficients.
AIChE J. 1974, 20, 263-272.
(27) Tsonopoulos, C. Second virial coefficients of polar haloalkanes. AIChE
J. 1975, 21, 827-829.
(28) Tsonopoulos, C. Second virial coefficients of water pollutants. AIChE
J. 1978, 24, 1112-1115.
(29) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases
and Liquids (Chemical Engineering Series), 3rd ed.; McGraw-Hill:
New York, 1977.
(30) Gmehling, J.; Brehm, A. Grundoperationen; Thieme-Verlag: Stuttgart,
1996.
(31) Tiegs, D.; Gmehling, J.; Medina, A.; Soares, M.; Bastos, J.; Alessi,
P.; Kikic, I. DECHEMA Chemistry Data Series IX, Part 1; DECHE-
MA: Frankfurt/Main, 1986.
(32) Krummen, M.; Wasserscheid, P.; Gmehling, J. Measurement of activity
coefficients at infinite dilution in ionic liquids using the dilutor
technique. J. Chem. Eng. Data 2002, 47, 1411-1417.
(14) Poole, C. F. Chromatographic and spectroscopic methods for the
determination of solvent properties of room-temperature ionic liquids.
J. Chromatogr. A 2004, 1037, 49-82.
(15) Heintz, A. Recent developments in thermodynamics and thermophysics
of non-aqueous mixtures containing ionic liquids. J. Chem. Thermodyn.
2005, 37, 525-535.
Received for review January 24, 2006. Accepted March 29, 2006.
JE060033F
(16) Welton, T. Room-temperature ionic liquids. solvents for synthesis and
catalysis. Chem. ReV. 1999, 99, 2071-2083.