Macromolecules, Vol. 39, No. 19, 2006
Sulfonated Poly(arylene-co-naphthalimide)s 6431
Figure 8. SEM micrographs of polymer membranes: (a) I-50; (b) I-70; (c) I-90; (d) II-70.
of Nafion 117 (1.5 × 10-1 S/cm, at 80 °C). Copolymer I-50
and I-70 membrane also showed sharper increase in the proton
conductivity with the temperature than that of Nafion 117.
Among the two types of copolymer I and II, copolymer I
showed higher conductivities with comparably similar IEC
values. For example, the proton conductivity of I-50 with IEC
1.65 is about 3.5 times higher than that of II-70 with IEC 1.89
at 80 °C. These proton conducting properties seem to reflect
their water uptake behavior.
SEM. Figure 8 shows the morphology of sulfonated copoly-
mer. The lighter regions represent localized ionic domains; the
dark regions represent hydrophobic domains. The enhancement
in the size of pores with the degree of sulfonation of the
membranes can be observed clearly. The micrographs provide
direct evidence of biphasic morphology for the polymers. The
ionic aggregates are visibly connected to yield a continuous ionic
network. The density of the ionic pathways increases with ionic
content as evidenced from Figure 8a-d and explains why the
ionic conductivity rises to relatively high values.
1,4,5,8-naphthalimide moiety with a similar IEC values. When
considering both proton conductivity and water stability,
copolymer I-50 with IEC 1.67 has the best combination of
properties for application in PEM for FC. Its proton conductivity
reaches 2.6 × 10-1 S/cm, at 80 °C), which is higher than that
of Nafion 117 (1.5 × 10-1 S/cm, at 80 °C). Consequently, these
materials proved to be promising as proton exchange mem-
branes.
Acknowledgment. We thank the National Basic Research
Program of China (No. 2003CB615704) and the National
Science Foundation of China (No. 20474061) for the financial
support.
References and Notes
(1) Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5.
(2) Costamagna, P.; Srinivasan, S. J. Power Sources 2001, 102, 253.
(3) Rikukawa, K.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463.
(4) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.
(5) (a) Inzelt, G.; Pineri, M.; Schultze, J. W.; Vorofyntsev, M. A.
Electrochim. Acta 2000, 45, 240. (b) Savadogo, O. J. New Mater.
Electron. 1998, 1, 47.
Conclusion
(6) (a) Hickner, M. A.; Ghassem, H.; Kim, Y. S.; Einsla, B. R.; McGrath,
J. E. Chem. ReV. 2004, 104, 4587. (b) Li, Q. F.; He, R. H.; Jensen, J.
O.; Bjerrum, N. J. Chem. Mater. 2003, 15, 4896. (c) Kerres, J. A. J.
Membr. Sci. 2001, 185, 3.
(7) Jones, D. J.; Rozie`re, J. J. Membr. Sci. 2001, 185, 41. (b) Xing, P.;
Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Wang, K.;
Kaliaguine, S. J. Membr. Sci. 2004, 229, 95. (c) Gil, M.; Ji, X.; Li,
X.; Na, H.; Hampsey, J. E.; Lu, Y. J. Membr. Sci. 2004, 234, 75. (d)
Xing, P.; Robertson, G. D.; Guiver, M. D.; Mikhailenko, S. D.;
Kaliaguine, S. Macromolecules 2004, 37, 7960. (e) Vetter, S.;
Ruffmann, B.; Buder, I.; Nunes, S. P. J. Membr. Sci. 2004, 260,
181.
(8) (a) Nolte, R.; Ledjeff, K.; Bauer, M. Malhaupt, R. J. Membr. Sci.
1993, 83, 211.(b) Kerres, J.; Cui, W.; Reichle, S. J. Polym. Sci., Polym.
Chem. 1996, 34, 2421. (c) Wang, F.; Hickner, M.; Kim, Y. S.;
Zawodzinski, T. A.; McGrath, J. E. J. Membr. Sci. 2002, 197, 231.
(d) Karlsson, L. E.; Jannasch, P. J. Membr. Sci. 2004, 230, 61. (e)
Willes, K. B.; Wang, F.; McGrath, J. E. J. Polym. Sci., Polym. Chem.
2005, 43, 2964.
The primarily sulfonated aromatic dichloride monomer and
hydrophobic dichloride monomers containing trifluoromethyl-
substituted 1,8-naphthalimide or 1,4,5,8-naphthalimide moieties
were synthesized and used as comonomers to generate oxidative
and water stable copolymers for proton exchange membranes.
The synthesized copolymers with the -SO3H group in the side
chain of polymers possessed high molecular weights, revealed
by their high viscosity and the formation of tough and flexible
membranes. The copolymer membranes exhibited excellent
water and oxidative stabilities due to the introduction of the
hydrophobic CF3 groups on the ortho-position of imido groups,
which could protect the polymer main chains from being
attacked by water molecules containing highly oxidizing radical
species. The sulfonated copolyimides containing 1,8-naphthal-
imide moiety (I-x) exhibited better hydrolytic and oxidative
stabilies, and higher proton conductivity than those containing
(9) (a) Cabbaso, I.; Yuan, Y.; Mittelsteadt, C. US Patent 5,989,742, 1999.
(b) Miyatake, K.; Oyaizu, K.; Tsuchida, E.; Hay, A. S. Macromolecules