Page 5 of 6
Journal of the American Chemical Society
Carbonylation: Construction of β-Quaternary Carbon Centers.
(21) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.;
Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.;
Eastgate, M. D.; Baran, P. S. Nickel-Catalyzed Barton
Decarboxylation and Giese Reactions: A Practical Take on Classic
Transforms. Angewandte Chemie International Edition 2017, 56,
260–265.
(22) (a) Farney, E. P.; Feng, S. S.; Schäfers, F.; Reisman, S. E.
Total Synthesis of (+)-Pleuromutilin. Journal of the American
Chemical Society 2018, 140, 1267–1270; (b) Wang, H.; Zhang, J.;
Shi, J.; Li, F.; Zhang, S.; Xu, K. Organic Photoredox-Catalyzed
Synthesis of δ-Fluoromethylated Alcohols and Amines via 1,5-
Hydrogen-Transfer Radical Relay. Organic Letters 2019, 21,
5116–5120.
(23) (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.;
Perchinummo, M. Nucleophilic character of alkyl radicals—VI: A
new convenient selective alkylation of heteroaromatic bases.
Tetrahedron 1971, 27, 3575–3579; (b) Cui, L.; Chen, H.; Liu, C.;
Li, C. Silver-Catalyzed Decarboxylative Allylation of Aliphatic
Carboxylic Acids in Aqueous Solution. Organic Letters 2016, 18,
2188–2191.
(24) for an example of Ag/Fe co-catalysis see: Ouyang, X.-H.;
Song, R.-J.; Hu, M.; Yang, Y.; Li, J.-H. Silver-Mediated
Intermolecular 1,2-Alkylarylation of Styrenes with α-Carbonyl
Alkyl Bromides and Indoles. Angewandte Chemie International
Edition 2016, 55, 3187–3191.
(25) Walling, C. Fenton's reagent revisited. Accounts of Chemical
Research 1975, 8, 125–131.
(26) Bonaparte, A. C.; Betush, M. P.; Panseri, B. M.; Mastarone,
D. J.; Murphy, R. K.; Murphree, S. S. Novel Aerobic Oxidation of
Primary Sulfones to Carboxylic Acids. Organic Letters 2011, 13,
1447–1449.
(27) Crabtree, S. R.; Chu, W. L. A.; Mander, L. N. C-Acylation
of Enolates by Methyl Cyanoformate: An Examination of Site- and
Stereoselectivity. Synlett 1990, 1990, 169–170.
(28) Mizuki, K.; Iwahashi, K.; Murata, N.; Ikeda, M.; Nakai, Y.;
Yoneyama, H.; Harusawa, S.; Usami, Y. Synthesis of Marine
Natural Product (−)-Pericosine E. Organic Letters 2014, 16, 3760–
3763.
1
2
3
4
5
6
7
8
Journal of the American Chemical Society 2014, 136, 5267–5270;
(g) Xu, J.-W.; Zhang, Z.-Z.; Rao, W.-H.; Shi, B.-F. Site-Selective
Alkenylation of δ-C(sp3)–H Bonds with Alkynes via a Six-
Membered Palladacycle. Journal of the American Chemical
Society 2016, 138, 10750–10753; (h) Deb, A.; Singh, S.; Seth, K.;
Pimparkar, S.; Bhaskararao, B.; Guin, S.; Sunoj, R. B.; Maiti, D.
Experimental and Computational Studies on Remote γ-C(sp3)–H
Silylation and Germanylation of Aliphatic Carboxamides. ACS
Catalysis 2017, 7, 8171–8175; (i) Chen, Y.-Q.; Wang, Z.; Wu, Y.;
Wisniewski, S. R.; Qiao, J. X.; Ewing, W. R.; Eastgate, M. D.; Yu,
J.-Q. Overcoming the Limitations of γ- and δ-C–H Arylation of
Amines through Ligand Development. Journal of the American
Chemical Society 2018, 140, 17884–17894.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) $90 USD for 100 g from Oakwood Chemical.
(15) Bennani, Y. L.; Chamberlin, S. A.; Chemburkar, S. R.; Chen,
J.; Dart, M. J.; Gupta, A. K.; Wang, L. Cycloalkylamides and their
therapeutic applications. U.S. Patent application 20040209858A1,
2003.
(16) Merad, J.; Candy, M.; Pons, J.-M.; Bressy, C. Catalytic
Enantioselective Desymmetrization of Meso Compounds in Total
Synthesis of Natural Products: Towards an Economy of Chiral
Reagents. Synthesis 2017, 49, 1938–1954.
(17) Kim, Y.; Kim, S.-T.; Kang, D.; Sohn, T.-i.; Jang, E.; Baik,
M.-H.; Hong, S. Stereoselective construction of sterically hindered
oxaspirocycles via chiral bidentate directing group-mediated
C(sp3)–O bond formation. Chemical Science 2018, 9, 1473–1480.
(18) (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. A Highly
Selective Catalytic Method for the Oxidative Functionalization of
C−H Bonds. Journal of the American Chemical Society 2004, 126,
2300–2301; (b) Zhang, S.-Y.; He, G.; Zhao, Y.; Wright, K.; Nack,
W. A.; Chen, G. Efficient Alkyl Ether Synthesis via Palladium-
Catalyzed, Picolinamide-Directed Alkoxylation of Unactivated
C(sp3)–H and C(sp2)–H Bonds at Remote Positions. Journal of the
American Chemical Society 2012, 134, 7313–7316; (c) Chen, F.-J.;
Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F.
Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–
H bonds using a removable directing group: efficient synthesis of
alkyl ethers. Chemical Science 2013, 4, 4187–4192; (d) Shan, G.;
Yang, X.; Zong, Y.; Rao, Y. An Efficient Palladium-Catalyzed
C H Alkoxylation of Unactivated Methylene and Methyl Groups
with Cyclic Hypervalent Iodine (I3+) Oxidants. Angewandte
Chemie International Edition 2013, 52, 13606–13610.
(29) Ziegler, E.; Belegratis, K. Synthesen von Heterocyclen, 112.
Mitt.: Zur Chemie der Ketoximäther. Monatshefte für Chemie /
Chemical Monthly 1968, 99, 1454–1459.
(30) (a) Hosomi, A. Characteristics in the reactions of allylsilanes
and their applications to versatile synthetic equivalents. Accounts
of Chemical Research 1988, 21, 200–206; (b) Akira, H.; Katsukiyo,
M. Development of New Reagents Containing Silicon and Related
Metals and Application to Practical Organic Syntheses. Bulletin of
the Chemical Society of Japan 2004, 77, 835–851.
(31) Déléris, G.; Pillot, J. P.; Rayez, J. C. Influence of a silyl group
on an allylic position. A theoretical approach. Tetrahedron 1980,
36, 2215–2218.
(32) Gaich, T.; Baran, P. S. Aiming for the Ideal Synthesis. The
Journal of Organic Chemistry 2010, 75, 4657–4673.
(19) for recent examples of desymmetrizing C–H activation see:
(a) Pedroni, J.; Cramer, N. Enantioselective C–H
Functionalization–Addition
Sequence
Delivers
Densely
Substituted 3-Azabicyclo[3.1.0]hexanes. Journal of the American
Chemical Society 2017, 139, 12398–12401; (b) Fu, J.; Ren, Z.;
Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Desymmetrization of
cyclohexanes by site- and stereoselective C–H functionalization.
Nature 2018, 564, 395–399; for reviews on desymmetrization
using C–H activation/functionalization see: (c) Newton, C. G.;
Wang, S.-G.; Oliveira, C. C.; Cramer, N. Catalytic Enantioselective
Transformations Involving C–H Bond Cleavage by Transition-
Metal Complexes. Chemical Reviews 2017, 117, 8908–8976; (d)
Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q.
Enantioselective C(sp3)‒H bond activation by chiral transition
metal catalysts. Science 2018, 359, eaao4798.
(20) Barton, D. H. R.; Ching-Yuh, C.; Joseph, J. C. Homologation
of acids via carbon radicals generated from the acyl derivatives of
N-hydroxy-2-thiopyridone.
(The
two-carbon
problem).
Tetrahedron Letters 1991, 32, 3309–3312.
ACS Paragon Plus Environment