Organic Letters
Letter
Ed.; Thieme: Stuttgart, 2001; Vol. 4, p 837. (i) Denmark, S. E.; Fu, J.
Chem. Rev. 2003, 103, 2763−2794. (j) Denmark, S. E.; Liu, J. H. C.
Angew. Chem., Int. Ed. 2010, 49, 2978−2986. (k) Nakao, Y.; Hiyama,
T. Chem. Soc. Rev. 2011, 40, 4893−4901.
(2) (a) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K.
A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663−3667.
(b) Martin, S. E. S.; Watson, D. A. J. Am. Chem. Soc. 2013, 135,
13330−13333. (c) Martin, S. E. S.; Watson, D. A. Synlett 2013, 24,
2177−2182. (d) McAtee, J. R.; Martin, S. E. S.; Cinderella, A. P.; Reid,
W. B.; Johnson, K. A.; Watson, D. A. Tetrahedron 2014, 70, 4250−
4256. (e) Cinderella, A. P.; Vulovic, B.; Watson, D. A. J. Am. Chem.
Soc. 2017, 139, 7741−7744. (f) Vulovic, B.; Watson, D. A. Eur. J. Org.
Chem. 2017, 2017, 4996−5009.
catalyst 1 compared to all previously reported catalysts for the
silyl-Heck reaction.
In conclusion, through study of the fate of the catalytic
additives under previously optimized conditions, we have
discovered a new, single-component catalyst 1 that is both
bench stable and highly effective in silyl-Heck reactions. The
key to this finding was the discovery that complex 5 forms as a
stable μ-bridged Pd(II)I2 dimer with a 1:1 ligand to metal ratio
using the large JessePhos ligand (L2). This new precatalyst
appears to be the most effective system developed to date for
the silyl-Heck reaction. It requires only low catalyst loading
(0.5−1 mol %) and provides a unified set of conditions that are
applicable to both α-olefin and styrene substrates. Further
studies are underway to understand better the details of how
this complex is reduced in situ to Pd(0), which will be reported
in due course. However, in the meantime, catalyst 1 provides a
very significant practical advantage that should greatly facilitate
the implementation of silyl-Heck transformations in the
preparation of unsaturated silanes.
(3) For early studies in the area, see: (a) Yamashita, H.; Hayashi, T.;
Kobayashi, T.; Tanaka, M.; Goto, M. J. Am. Chem. Soc. 1988, 110,
4417−4418. (b) Yamashita, H.; Kobayashi, T.; Hayashi, T.; Tanaka,
M. Chem. Lett. 1991, 20, 761−762. (c) Yamashita, H.; Tanaka, M.;
Goto, M. Organometallics 1997, 16, 4696−4704.
(4) McAtee, J. R.; Yap, G. P. A.; Watson, D. A. J. Am. Chem. Soc.
2014, 136, 10166−10172.
(5) McAtee, J. R.; Krause, S. B.; Watson, D. A. Adv. Synth. Catal.
2015, 357, 2317−2321.
(6) Pan, Y.; Young, G. B. J. Organomet. Chem. 1999, 577, 257−264.
(7) Lee, H. G.; Milner, P. J.; Colvin, M. T.; Andreas, L.; Buchwald, S.
L. Inorg. Chim. Acta 2014, 422, 188−192.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(8) Reid, W. B.; Spillane, J. J.; Krause, S. B.; Watson, D. A. J. Am.
Chem. Soc. 2016, 138, 5539−5542.
(9) Only a few complexes bearing an L2Pd(II)2I4 core have been
previously reported. See: (a) Alcock, N. W.; Wilson, W. L.; Nelson, J.
H. Inorg. Chem. 1993, 32, 3193−3195. (b) Ryabov, A. D.; Kuz’mina, L.
G.; Polyakov, V. A.; Kazankov, G. M.; Ryabova, E. S.; Pfeffer, M.; van
Eldik, R. J. Chem. Soc., Dalton Trans. 1995, 999−1006. (c) Wing-Sze
Hui, J.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1997, 2445−2450.
(d) Smith, D. C., Jr.; Lake, C. H.; Gray, G. M. Dalton Trans. 2003,
2950−2955. (e) Mednikov, E. G.; Dahl, L. F. Inorg. Chim. Acta 2005,
358, 1557−1570. (f) Xu, C.; Wang, Z.-Q.; Zhang, Y.-P.; Liang, T.; Xu,
Y. Z. Kristallogr. - New Cryst. Struct. 2010, 225, 273.
Crystallographic data for compound 1 (CIF)
Crystallographic data for compound 4 (CIF)
Experimental procedures and spectral data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) The bond strength for the Si−Cl bond is appoximately 113
kcal/mol vs 77 kcal/mol for the Si−I bond. See: Walsh, R. Acc. Chem.
Res. 1981, 14, 246−252.
(11) Aspira Chemical (Oakland, CA), Product No. 300685.
(12) Larger silyl iodides have been previously used to prepare vinyl
silanes using silyl-Heck conditions; see ref 5.
Notes
The authors declare no competing financial interest.
(13) (a) Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003, 5,
1895−1898. (b) Denmark, S. E.; Tymonko, S. A. J. Am. Chem. Soc.
2005, 127, 8004−8005. (c) Yamane, M.; Uera, K.; Narasaka, K. Bull.
Chem. Soc. Jpn. 2005, 78, 477−486.
ACKNOWLEDGMENTS
■
The University of Delaware, the National Science Foundation
(CAREER CHE-1254360), the Delaware Economic Develop-
ment Office (Grant 16A00384), Gelest, Inc. (Topper Grant
Program), and the Research Corp. Cottrell Scholars Program
are gratefully acknowledged for support. S.B.K. thanks the NSF
for a Graduate Research Fellowship (1247394). Data was
acquired at UD on instruments obtained with the assistance of
NSF and NIH funding (NSF CHE0421224, CHE0840401,
CHE1229234, CHE1048367; NIH S10OD016267,
S10RR026962, P20GM104316, P30GM110758).
REFERENCES
■
(1) (a) Brook, M. A. Silicon in Organic, Organometallic, and Polymer
Chemistry; Wiley: Chichester, 2000. (b) Fleming, I. Organic Silicon
Chemistry. In Comprehensive Organic Chemistry; Barton, D. H. R.,
Ollis, W. D., Eds.; Pergamon: Oxford, 1979; Vol. 3, p 539. (c) Hosomi,
A. Acc. Chem. Res. 1988, 21, 200−206. (d) Fleming, I. Allylsilanes,
Allylstannanes, and Related Systems. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 2, p 563. (e) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207−
2293. (f) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599−7662.
(g) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063−
2192. (h) Sarkar, T. K. Allylsilanes. In Science of Synthesis; Fleming, I.,
D
Org. Lett. XXXX, XXX, XXX−XXX