H.L.R. Cooper, J.T. Groves / Archives of Biochemistry and Biophysics 507 (2011) 111–118
117
[9] P.R. Ortiz de Montellano, J.J. De Voss, in: P.R. Ortiz de Montellano (Ed.),
Cytochrome P450 Structure, Mechanism and Biochemistry, Klewer Academic/
Plenum, New York, 2005, pp. 183–245.
[10] J.T. Groves, in: P.R. Ortiz de Montellano (Ed.), Cytochrome P450: Structure,
Mechanism, and Biochemistry, Klewer Academic/Plenum, New York, 2005, pp.
1–44.
[11] I.G. Denisov, T.M. Makris, S.G. Sligar, I. Schlichting, Chem. Rev. 105 (2005)
2253–2277.
[12] J.T. Groves, G.A. McClusky, J. Am. Chem. Soc. 98 (1976) 859–861.
[13] J.T. Groves, M. Van Der Puy, J. Am. Chem. Soc. 98 (1976) 5290.
[14] J.T. Groves, G.A. McClusky, R.E. White, M.J. Coon, Biochem. Biophys. Res.
Commun. 81 (1978) 154–160.
Experimental
General
Tetramethylcyclopropane and authentic standards for their oxi-
dation products 2–6 were purchased or synthesized by literature
methods.
Cytochrome P450 assays
[15] J.T. Groves, S. Krishnan, G.E. Avaria, T.E. Nemo, Illus (1980) P277–290.
[16] J.T. Groves, Proc. Natl. Acad. Sci. USA 100 (2003) 3569–3574.
[17] J.T. Groves, J. Inorg. Biochem. 100 (2006) 434–447.
[18] J.T. Groves, D.V. Adhyam, J. Am. Chem. Soc. 106 (1984) 2177–2181.
[19] P.R. Ortiz de Montellano, J. Am. Chem. Soc. 109 (1987) 3415–3420.
[20] V. Stanjek, M. Miksch, P. Lueer, U. Matern, W. Boland, Angew. Chem. Int. Ed. 38
(1999) 400–402.
[21] Y.Y. Jiang, X. He, P.R. Ortiz de Montellano, Biochemistry 45 (2006) 533–542.
[22] J.T. Groves, T.E. Nemo, R.S. Myers, J. Am. Chem. Soc. 101 (1979) 1032–1033.
[23] J.T. Groves, R.C. Haushalter, M. Nakamura, T.E. Nemo, B.J. Evans, J. Am. Chem.
Soc. 102 (1981) 2884–2886.
[24] J.T. Groves, W.J. Kruper, R.C. Haushalter, J. Am. Chem. Soc. 102 (1980) 6377–
6380.
[25] S.R. Bell, J.T. Groves, J. Am. Chem. Soc. 131 (2009) 9640–9641.
[26] T. Egawa, H. Shimada, Y. Ishimura, Biochem. Biophys. Res. Commun. 201
(1994) 1464–1469.
Cytochrome P450 enzymes were purchased in insect cell micro-
somes from BD Biosciences (Woburn, MA). The microsomes also
contained cytochrome P450 reductase (activity 2200 nmol/
(min mg protein)) and cytochrome b5 (610 pmol/mg protein). For
each reaction, 100 lL of Supersomes containing 100 pmol P450,
540 pmol cytochrome b5, cytochrome P450 reductase of
200 nmol/min activity as received was added to a mixture of buffer
(0.5 mL, 100 mM potassium phosphate, pH 7.4), NADPH (8 mg,
10
bated in a water bath at 37 °C for 30 min. The reaction was stopped
by the addition of dichloromethane (250 L) and centrifuged for
lmol), and substrate (1 lL, 7 lmol). This mixture was incu-
l
[27] T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300–20309.
[28] D.G. Kellner, S.C. Hung, K.E. Weiss, S.G. Sligar, J. Biol. Chem. 277 (2002) 9641–
9644.
three minutes at 13,750 rpm. The organic layer was separated
and dried with MgSO4, then subjected to GC-MS analysis.
[29] K.L. Stone, R.K. Behan, M.T. Green, Proc. Natl. Acad. Sci. USA 102 (2005) 16563–
16565.
[30] Q. Wang, X. Sheng, J.H. Horner, M. Newcomb, J. Am. Chem. Soc. 131 (2009)
10629–10636.
Oxidation of TMCP by synthetic metalloporphyrins
The substrate 1 (10
stock solution of the porphyrin (65
l
L) in acetonitrile (200
lL) was added to a
[31] M. Newcomb, J.A. Halgrimson, J.H. Horner, E.C. Wasinger, L.X. Chen, S.G. Sligar,
Proc. Natl. Acad. Sci. USA 105 (2008) 8179–8184.
[32] R.K. Behan, L.M. Hoffart, K.L. Stone, C. Krebs, M.T. Green, J. Am. Chem. Soc. 129
(2007) 5855–5859.
[33] J. Rittle, J.M. Younker, M.T. Green, Inorg. Chem. 49 (2010) 3610–3617.
[34] J. Rittle, M.T. Green, Science 330 (2010) 933–937.
[35] T. Shimada, H. Yamazaki, M. Mimura, Y. Inui, F. Guengerich, J. Pharmacol. Exp.
Ther. 270 (1994) 414–423.
[36] J.A. Williams, R. Hyland, B.C. Jones, D.A. Smith, S. Hurst, T.C. Goosen, V.
Peterkin, J.R. Koup, S.E. Ball, Drug Metab. Dispos. 32 (2004) 1201–1208.
[37] D.T. Trafalis, E.S. Panteli, A. Grivas, C. Tsigris, P.N. Karamanakos, Exp. Opin.
Drug Metabol. Toxicol. 6 (2010) 307–319.
lL of 5.6 mM in acetonitrile
[3.93 mg/mL Fe-4-TMPyP]), which was purchased from Mid-Cen-
tury Chemical. Solid iodosylbenzene (5 mg) was added in five por-
tions over 15 min with efficient stirring, then stirred for an
additional 15 min. The reaction mixture was filtered through a
short plug of silica and activated charcoal, which was rinsed with
dichloromethane (200 lL). The solution was diluted for GC-MS
(around 1:100). The ruthenium porphyrin catalyst, Ru(TPFPP)(CO),
was prepared and the oxidation carried out as previously described
[43].
[38] M. Comporti, C. Signorini, S. Leoncini, C. Gardi, L. Ciccoli, A. Giardini, D.
Vecchio, B. Arezzini, Genes Nutr. 5 (2010) 101–109.
[39] J.K. Atkinson, K.U. Ingold, Biochemistry 32 (1993) 9209–9214.
[40] V.W. Bowry, K.U. Ingold, J. Am. Chem. Soc. 113 (1991) 5699–5707.
[41] R.N. Austin, K. Luddy, K. Erickson, M. Pender-Cudlip, E. Bertrand, D. Deng, R.S.
Buzdygon, J.B. van Beilen, J.T. Groves, Angew. Chem. Int. Ed. 47 (2008) 5232–
5234.
[42] D. Pompon, Biochemistry 26 (2002) 6429–6435.
[43] C.Q. Wang, K.V. Shalyaev, M. Bonchio, T. Carofiglio, J.T. Groves, Inorg. Chem. 45
(2006) 4769–4782.
[44] K. Auclair, Z.B. Hu, D.M. Little, P.R. Ortiz de Montellano, J.T. Groves, J. Am.
Chem. Soc. 124 (2002) 6020–6027.
[45] R.N. Austin, D.Y. Deng, Y.Y. Jiang, K. Luddy, J.B. van Beilen, P.R. Ortiz de
Montellano, J.T. Groves, Angew. Chem. Int. Ed. 45 (2006) 8192–8194.
[46] M. Newcomb, P.F. Hollenberg, M.J. Coon, Arch. Biochem. Biophys. 409 (2003)
72–79.
GC-MS analysis
GC-MS analyses were run using an Agilent 7890A GC coupled to
a 5975C Inert MSD with a Rtx-5Sil MS (30 m length, 0.25 mm ID,
0.25 lm film) column. Two GC-MS thermal gradient methods were
used: Method 1 started at 30 °C, holding for 6 min, ramping to
230 °C at 10 °C/min and Method 2 started at 50 °C, holding for
2 min, ramping to 230 °C at 10 °C/min. Dodecane (13 ng/mL) was
added as an internal standard.
[47] M. Newcomb, P.H. Toy, Acc. Chem. Res. 33 (2000) 449–455.
[48] R.D. Bach, O. Dmitrenko, J. Am. Chem. Soc. 126 (2004) 4444–4452.
[49] F.P. Guengerich, D.H. Kim, M. Iwasaki, Chem. Res. Toxicol. 4 (1991) 168–179.
[50] Z.Y. Cheng, Y.Z. Li, Chem. Rev. (Washington, D.C., United States) 107 (2007)
748–766.
Acknowledgment
We are grateful for support of this research by the National
Institutes of Health (2R37 GM036298).
[51] L.A. Reinke, E.K. Lai, C.M. Dubose, P.B. McCay, Proc. Natl. Acad. Sci. USA 84
(1987) 9223–9227.
[52] E. Albano, A. Tomasi, L. Goria-Gatti, M.U. Dianzani, Chem. Biol. Interact. 65
(1988) 223–234.
[53] K. Minakata, E. Okuno, M. Nakamura, H. Iwahashi, J. Biochem. 142 (2007) 73–
78.
[54] E. Albano, A. Tomasi, J.O. Persson, Y. Terelius, L. Goriagatti, M.
Ingelmansundberg, M.U. Dianzani, Biochem. Pharmacol. 41 (1991) 1895–1902.
[55] D.A. Stoyanovsky, A.I. Cederbaum, Chem. Res. Toxicol. 12 (1999) 730–736.
[56] A. Gurbay, B. Gonthier, D. Daveloose, A. Favier, F. Hincal, Free Radic. Biol. Med.
30 (2001) 1118–1121.
[57] A. Boto, C. Betancor, E. Suarez, Tetrahedron Lett. 35 (1994) 5509–5512.
[58] E.R. Birnbaum, J.A. Labinger, J.E. Bercaw, H.B. Gray, Inorg. Chim. Acta 270
(1998) 433–439.
References
[1] P.R. Ortiz de Montellano, Cytochrome P450: Structure, Mechanism and
Biochemistry, Academic/Plenum Publishers, New York, 2004.
[2] H. Veith, N. Southall, R.L. Huang, T. James, D. Fayne, N. Artemenko, M. Shen, J.
Inglese, C.P. Austin, D.G. Lloyd, D.S. Auld, Nat. Biotechnol. 27 (2009) 1050–
U1123.
[3] F.P. Guengerich, Chem. Biol. 16 (2009) 1215–1216.
[4] D.C. Lamb, M.R. Waterman, S.L. Kelly, F.P. Guengerich, Curr. Opin. Biotechnol.
18 (2007) 504–512.
[5] R.S. Obach, Chem. Res. Toxicol. 23 (2010) 42.
[59] P.R. Porubsky, K.M. Meneely, E.E. Scott, J. Biol. Chem. 283 (2008) 33698–33707.
[60] P.R. Porubsky, K.P. Battaile, E.E. Scott, J. Biol. Chem. 285 (2010) 22282–22290.
[61] K.R. Iyer, J.P. Jones, J.F. Darbyshire, W.F. Trager, Biochemistry 36 (1997) 7136–
7143.
[6] C.B. Frederick, R.S. Obach, Clin. Pharmacol. Ther. 87 (2010) 345–350.
[7] P.R. Ortiz de Montellano, Chem. Rev. 110 (2010) 932–948.
[8] S. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, Chem. Rev. 110 (2010)
949–1017.