LETTER
Synthesis of 5-Substituted 1H-Tetrazoles
393
Table 1 Synthesis of 5-Substituted 1H-Tetrazolesa (continued)
Entry
Substrate (1)
Product (2)
Conditionsb
Time (h)
Yield (%)c
H
Cl
C
D
3
4.5
75
77
Cl
Cl
Cl
N
m
N
N
CN
O
Cl
Cl
N
O
H
C
D
2
3.5
82
81
n
N
O
N
O
CN
N
N
a The structures of the products were confirmed from their spectroscopic (IR, 1H and 13C NMR and MS) and analytical data.
b Conditions A: Nitrile, NaN3 (1.5 equiv), NaHSO4·SiO2 (45 g per mol of nitrile), DMF, 120 °C. Conditions B: Nitrile, NaN3 (1.5 equiv), I2 (15
g per mol of nitrile), DMF, 120 °C. Conditions C: Nitrile, NaN3 (1.5 equiv), NaHSO4·SiO2 (45 g per mol of nitrile), 2-butanone, 75 °C. Condi-
tions D: Nitrile, NaN3 (1.5 equiv), I2 (15 g per mol of nitrile), 2-butanone, 75 °C.
c Isolated yield after purification.
(7) (a) Das, B.; Satyalakshmi, G.; Suneel, K. Tetrahedron Lett.
2009, 50, 2770. (b) Das, B.; Balasubramanyam, P.;
Krishnaiah, M.; Veeranjaneyulu, B.; Reddy, G. C. J. Org.
Chem. 2009, 74, 4393. (c) Das, B.; Damodar, K.; Bhunia, N.
J. Org. Chem. 2009, 74, 5607.
In conclusion, we have developed a convenient and highly
advantageous synthesis of 5-substituted 1H-tetrazoles.
The valuable features of this method include the avoid-
ance of toxic metal derivatives and explosive hydrazoic
acid, and its general applicability; the approach can be
used to convert aryl, heteroaryl and alkyl nitriles, sterical-
ly hindered ortho-substituted aryl nitriles, organic nitriles
containing bulky aryl groups, chloroalkyl nitriles and or-
ganic nitriles containing a carbonyl group.
(8) Breton, G. W. J. Org. Chem. 1997, 62, 8952.
(9) (a) Ahn, S.; Reddy, J. P.; Kariuki, B. M.; Chatarjee, S.;
Ranganathan, A.; Pedireddy, V. R.; Rao, C. N. R.; Harris,
K. D. M. Chem. Eur. J. 2005, 11, 2433. (b) Devender, T.;
Bharathi, D. V.; Manikyamba, P. Indian J. Chem., Sect. A
2008, 47, 863.
(10) La Bourdonnec, B.; Meulon, E.; Yous, S.; Goossens, J.-F.;
Houssin, R.; Henichart, J.-P. J. Med. Chem. 2000, 43, 2685.
(11) Matthews, D. P.; Green, J. E.; Shuker, A. J. J. Comb. Chem.
2000, 2, 19.
Acknowledgment
The authors thank CSIR and UGC, New Delhi for financial assi-
stance.
(12) Nishiyama, K.; Yamaguchi, T. Synthesis 1988, 106.
(13) Typical experimental procedure using NaHSO4·SiO2: To
a mixture of benzonitrile (2.0 mmol) and NaN3 (3.0 mmol)
in DMF (5 mL), NaHSO4·SiO2 (0.09 g) was added. The
mixture was stirred at 120 °C for 10 h until the reaction was
complete (reaction monitored by TLC). The catalyst was
removed by filtration and washed with EtOAc (2 × 5 mL).
The filtrate was treated with EtOAc (30 mL) and 4 M HCl
(20 mL) and stirred vigorously. The organic layer was
separated and the aqueous layer was extracted with EtOAc
(2 × 10 mL). The combined organic extracts were washed
with H2O (2 × 10 mL) and concentrated. The crude product
was subjected to column chromatography (silica gel;
hexane–EtOAc) to obtain pure 5-phenyl tetrazole (91%).
Typical experimental procedure using I2: To a mixture of
benzonitrile (2.0 mmol) and NaN3 (3.0 mmol) in DMF
(5 mL), I2 (0.03 g) was added and the mixture was stirred at
120 °C. After completion of the reaction (10 h), the mixture
was treated with EtOAc (30 mL) and 4 M HCl (20 mL) and
stirred vigorously. The organic layer was separated and the
aqueous layer was extracted with EtOAc (2 × 10 mL). The
combined organic portion was washed with saturated
sodium thiosulfate solution (2 × 10 mL) and H2O
References and Notes
(1) Part 189 in the series ‘Studies on novel synthetic
methodologies’.
(2) (a) Singh, H.; Chala, S.; Kapoor, V. K.; Paul, D.; Malhotra,
R. K. Prog. Med. Chem. 1980, 17, 151. (b) Butler, R. N. In
Comprehensive Heterocyclic Chemistry, Vol. 4; Katritzky,
A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon:
Oxford, 1996. (c) Jursic, B. S.; LeBlanc, B. W.
J. Heterocycl. Chem. 1998, 35, 405. (d) Ostrovskii, V. A.;
Pevzner, M. S.; Kofmna, T. P.; Shcherbinin, M. B.;
Tselinskii, I. V. Targets in Heterocyclic Systems, Vol. 3;
Societa Chimica Italiana: Rome, 1999, 467–526. (e) Hert,
R. J. Bioorg. Med. Chem. 2002, 10, 3379.
(3) Moderhack, D. J. Prakt. Chem./Chem.-Ztg. 1988, 340, 687.
(4) (a) Dunica, J. V.; Pierce, M. E.; Santella, J. B. III. J. Org.
Chem. 1991, 56, 2395. (b) Wittenberger, S. J. Org. Prep.
Proced. Int. 1994, 26, 499. (c) Kumar, A.; Narayanan, R.;
Shechter, H. J. Org. Chem. 1996, 61, 4462. (d) Koguro, K.;
Oga, T.; Mitsui, S.; Orita, R. Synthesis 1998, 910.
(e) Curran, D. P.; Hadida, S.; Kim, S. Y. Tetrahedron 1999,
55, 8997.
(5) (a) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66,
7945. (b) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4,
2525. (c) Himo, F.; Demko, Z. P.; Noodleman, L.;
Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.
(6) (a) Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.;
Vaccaro, L. J. Org. Chem. 2004, 69, 2896. (b) Kantam,
M. L.; Kumar, K. B. S.; Raja, K. P. J. Mol. Catal. A: Chem.
2006, 247, 186.
(2 × 10 mL) and subsequently concentrated. The residue
was purified by column chromatography (silica gel; hexane–
EtOAc) to afford pure 5-phenyl tetrazole (89%).
Spectroscopic data of representative novel compounds: 2c:
IR: 3442, 1598, 1563,1484, 1411 cm–1; 1H NMR (200 MHz,
DMSO-d6): d = 7.91 (1 H, br s), 7.84 (1 H, d, J = 8.0 Hz),
7.40 (1 H, t, J = 8.0 Hz), 7.30 (1 H, d, J = 8.0 Hz), 2.45 (3 H,
s); 13C NMR (50 MHz, DMSO-d6): d = 155.7, 138.6, 131.1,
128.2, 127.4, 123.8, 20.2; MS (ESI): m/z = 161 [M + H]+;
HRMS (ESI): m/z [M + H]+ calcd for C8H9N4: 161.0827;
found: 161.0830. 2d: IR: 3477, 1663, 1603, 1515, 1317 cm–1;
Synlett 2010, No. 3, 391–394 © Thieme Stuttgart · New York