C O M M U N I C A T I O N S
Table 1. Matched and Mismatched AAC Reactions
Scheme 3 a
a Conditions: (a) (i) DDQ, aq. CH2Cl2 (81%); (ii) Swern (88%); (b)
i
nPrCOBr, Pr2NEt, 50 mol % of 27, BTF, -25 °C (65%); (c) t-BuOAc,
KHMDS then MgBr2 (66%); (d) (i) NaBH4, EtOH; (ii) TsOH, toluene, 110
°C (56% for two steps).
utility in synthesis efforts directed toward polyketide-derived
materials.
Acknowledgment. Support from the National Institutes of
Health (R01 GM63151), the Bristol-Myers Squibb Foundation, Eli
Lilly & Co., and the Merck Research Laboratories is gratefully
acknowledged.
a Catalyst (10 mol %) 3a, entries a, b; 4a, entries c-f. b Stereochemical
assignments based on X-ray structure determinations of derivatives of 14c
and 16 and comparison of 1H coupling constants. c Diastereomeric ratios
1
determined by HPLC or H NMR analysis of crude reaction mixtures.
Scheme 2 a
Supporting Information Available: Experimental procedures,
stereochemical proofs, and representative 1H and 13C spectra. This
References
(1) For recent reviews, see: (a) Alcaide, B.; Almendros, P. Eur. J. Org. Chem.
2002, 1595. (b) Silvestri, M. G.; Desantis, G.; Mitchell, M.; Wong, C.-H.
Top. Stereochem. 2003, 23 267. (c) Shibasaki, M.; Yoshikawa, N.;
Matsunaga, S. In ComprehensiVe Asymmetric Catalysis, Supplement;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag:
Heidelberg, Germany, 2004; p 135. (d) Palomo, C.; Oiarbide, M.; Garcia,
J. M. Chem. Soc. ReV. 2004, 33, 65. (e) Notz, W.; Tanaka, F.; Barbas, C.
F., III. Acc. Chem. Res. 2004, 37, 580.
(2) (a) Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 7585.
(b) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752. (c)
Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Co´rdova, A. Angew.
Chem., Int. Ed. 2005, 44, 1343.
(3) (a) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121,
9742. (b) Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126,
14.
a Conditions: (a) (i) (MeO)MeNH2Cl, Me2AlCl; (ii) TBSCl, imidazole
(97%); (b) iBu2AlH (96%); (c) 10 mol % of 4a, EtCOCl, LiI, iPr2NEt (91%);
(d) iBu2AlH, THF; (ii) TsCl, pyr (83%); (e) Me3OBF4, proton sponge (81%);
(f) C3H5MgBr, CuBr (85%); (g) 2 mol % of Ir(PCy3)3+, 50:1 CH2Cl2:acetone
(98%).
(4) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352.
(5) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int.
Ed. Engl. 1985, 24, 1.
provided the terminal alkene 24 with ensuing Ir(I)-catalyzed olefin
isomerization delivering the requisite E propenyl unit in the
complete C5-C14 synthon 25.12
(6) R-Branched aldehydes generally require 1.5-3 equiv of lithium salt
(LiClO4 or LiI) for complete conversion. See ref 4.
(7) Control experiments confirmed that R-substituted aldehydes are not subject
to epimerization under the AAC reaction conditions.
From the C5-C14 synthon 25, completing the pironetin synthesis
proceeded by routine alcohol deprotection and oxidation to give
aldehyde 26 (Scheme 3). Engaging 26 in Lewis acid-catalyzed AAC
homologation (50 mol % of 27) employing butyryl bromide as a
butanoate enolate equivalent afforded â-lactone 28 (g95% de, 65%
yield) possessing all of the (-)-pironetin stereocenters.3b,13 â-Keto
ester 29 emerged from ring opening 28 with the magnesium enolate
of tert-butylacetate. Ketone reduction (NaBH4) and reacting the
resulting diol with TsOH elicited tert-butyl ester cleavage, lacton-
ization, and dehydration to generate the requisite 2-pyranone unit,
as well as silyl ether removal to directly furnish synthetic (-)-
pironetin (19) (56% over two steps).
Alkaloid-catalyzed AAC reactions provide a uniform strategy
for executing asymmetric syn- or anti-selective aldol additions on
enantioenriched aldehyde substrates. Iterative application of these
AAC reactions provides an entry to stereodefined polypropionate
building blocks. The AAC-based catalytic asymmetric total syn-
thesis of (-)-pironetin provides evidence for this methodology’s
(8) For anti aldehyde substrates, a solvent system composed of 10:1 CH2-
Cl2/DMF provided superior reaction rates and yields as compared to the
standard CH2Cl2/Et2O system.
(9) (a) Yoshida, T.; Koizumi, K.; Kawamura, Y.; Matsumoto, K.; Itazaki, H.
Japanese Patent Kokai 5-310726, 1993; European Patent 60389 A1, 1993.
(b) Kobayashi, S.; Tsochia, K.; Harada, T.; Nishide, M.; Kurokawa, T.;
Nakagawa, T.; Shimada, N.; Kobayashi, K. J. Antibiot. 1994, 47, 697.
(10) Previous syntheses: (a) Yasui, K.; Tamura, Y.; Nakatani, T.; Kawada,
K.; Ohtani, M. J. Org. Chem. 1995, 60, 7567. (b) Gurjar, M. K.;
Chakrabarti, A.; Rao, A. V. R. Heterocycles 1997, 45, 7 and references
therein. (c) Chida, N.; Yoshinaga, M.; Tobe, T.; Ogawa, S. Chem.
Commun. 1997, 1043. (d) Watanabe, H.; Watanabe, H.; Usui, T.; Kondoh,
M.; Osada, H.; Kitahara, T. J. Antibiot. 2000, 53, 540 and references
therein. (e) Keck, G. E.; Knutson, C. E.; Wiles, S. A. Org. Lett. 2001, 3,
707. (f) Dias, L. C.; de Oliveira, L. G.; de Sousa, M. A. Org. Lett. 2003,
5, 265.
(11) Lactone 20 was prepared as described in ref 4 from 3-p-methoxybenzyl-
oxypropanal.
(12) Nelson, S. G.; Bungard, C. J.; Wang, K. J. Am. Chem. Soc. 2003, 125,
13000.
(13) The alkaloid-catalyzed AAC variant failed for this transformation, a result
attesting to the complementary nature of the Lewis acid- and alkaloid-
catalyzed AAC reactions.
JA061938G
9
J. AM. CHEM. SOC. VOL. 128, NO. 23, 2006 7439