4418
S. C. Ceide, A. G. Montalban / Tetrahedron Letters 47 (2006) 4415–4418
2. Itami, K.; Yamazaki, D.; Yoshida, J.-i. J. Am. Chem. Soc.
2004, 126, 15396–15397.
11. (a) Sugi, Y.; Bando, K.-i. Chem. Lett. 1976, 5, 727–730; (b)
Ali, N. M.; McKillop, A.; Mitchell, M. B.; Rebelo, R. A.;
Wallbank, P. J. Tetrahedron 1992, 48, 8117–8126; (c)
Mitchell, M. B.; Wallbank, P. J. Tetrahedron Lett. 1991,
32, 2273–2276.
12. Yamanaka, H.; Ogawa, S.; Sakamoto, T. Heterocycles
1981, 4, 573–576.
13. Geerts, J. P.; van der Plas, H. C.; van Veldhuizen, A. Org.
Magn. Reson. 1975, 7, 86–88.
3. (a) Muller, T. J. J.; Braun, R.; Ansorge, M. Org. Lett.
¨
2000, 2, 1967–1970; (b) Dodson, R. M.; Seyler, J. K.
J. Org. Chem. 1951, 16, 461–465; (c) Adams, J. L.; Boehm,
J. C.; Kassis, S.; Gorycki, P. D.; Webb, E. F.; Hall, R.;
Sorenson, M.; Lee, J. C.; Ayrton, A.; Griswold, D. E.;
Gallagher, T. F. Bioorg. Med. Chem. Lett. 1998, 8, 3111–
3116.
4. (a) Breault, G. A.; Ellston, R. P. A.; Green, S.; James, S.
R.; Jewsbury, P. J.; Midgley, C. J.; Pauptit, R. A.;
Minshull, C. A.; Tucker, J. A.; Pease, J. E. Bioorg. Med.
Chem. Lett. 2003, 13, 2961–2966; (b) Ludovici, D. W.; De
Corte, B. L.; Kukla, M. J.; Ye, H.; Ho, C. Y.; Lichten-
stein, M. A.; Kavash, R. W.; Andries, K.; Bethune, M.-P.;
Azjin, H.; Pauwels, R.; Lewi, P. J.; Heeres, J.; Koymans,
L. M. H.; de Jonge, M. R.; Van Aken, K. J. A.; Daeyaert,
F. F. D.; Das, K.; Arnold, E.; Janssen, P. A. J. Bioorg.
Med. Chem. Lett. 2001, 11, 2235–2239; (c) Wojtowicz-
Rajchel, H.; Suchowiak, M.; Fiedorow, P.; Golankiewicz,
K. J. Chem. Soc. Perkin Trans. 2 1998, 841–845; (d)
Tjarks, W.; Gabel, D. J. Med. Chem. 1991, 34, 315–319;
(e) Schinazi, R. F.; Prusoff, W. H. J. Org. Chem. 1985, 50,
841–847; (f) Hilbert, G. E.; Jansen, E. F. J. Am. Chem.
Soc. 1934, 56, 134–139.
5. Organotins: (a) Majeed, A. J.; Antonsen, O.; Benneche,
T.; Undheim, K. Tetrahedron 1989, 45, 993–1006; (b)
Benneche, T. Acta Chem. Scand. 1990, 44, 927–931;
Organozincs: (c) Sandosham, J.; Undheim, K.; Rise, F.
Heterocycles 1993, 35, 235–244; (d) Simkovsky, N. M.;
Ermann, M.; Roberts, S. M.; Parry, D. M.; Baxter, A. D.
J. Chem. Soc. Perkin. Trans. 1 2002, 1847–1849; (e) Turck,
A.; Ple, N.; Lepretre-Gaquere, A.; Queguiner, G. Hetero-
cycles 1998, 49, 205–214; Organolithiums: (f) Ple, N.;
Turck, A.; Couture, K.; Queguiner, G. J. Org. Chem.
1995, 60, 3781–3786; (g) Mattson, R. J.; Sloan, C. P.
J. Org. Chem. 1990, 55, 3410–3412; (h) Taylor, H. M.;
Jones, C. D.; Davenport, J. D.; Hirsch, K. S.; Kress, T. J.;
Weaver, D. J. Med. Chem. 1987, 30, 1359–1365; Organo-
zirconocenes: (i) Mangalagiu, I.; Benneche, T.; Undheim,
K. Acta. Chem. Scand. 1996, 50, 914–917; Organoalanes:
(j) Lu, Q.; Mangalagiu, I.; Benneche, T.; Undheim, K.
Acta. Chem. Scand. 1997, 51, 302–306.
6. A good way to introduce selectivity is by using the 5-bromo-
2,4-dichloropyrimidine. It has been reported that the
first substitution takes place in the 4-position followed by
the 2-position. The bromine could subsequently be removed
via a simple hydrogenation: Yamai, K. J. Pharm. Soc. Jpn.
1942, 62, 315–333; Chem. Abstr. 1951, 45, 5150.
7. (a) Parry, P. R.; Wang, C.; Batsanov, A. S.; Bryce, M. R.;
Tarbit, B. J. Org. Chem. 2002, 67, 7541–7543; (b) Jiang,
B.; Yang, C.-g. Heterocycles 2000, 53, 1489–1498; (c)
Gong, Y.; Pauls, H. W. Synlett 2000, 829–831.
8. Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66,
7125–7128.
9. Bursavich, M. G.; Lombardi, S.; Gilbert, A. M. Org. Lett.
2005, 7, 4113–4116.
10. (a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–
6284; (b) Larhed, M.; Hallberg, A. Drug Discovery Today
2001, 6, 406–416; (c) Santagada, V.; Perissutti, E.; Cali-
endo, G. Curr. Med. Chem. 2002, 9, 1251–1283.
14. (a) Ple, N.; Turck, A.; Heynderickx, A.; Queguiner, G.
J. Heterocyclic Chem. 1994, 31, 1311–1315; (b) Ple, N.;
Turck, A.; Martin, P.; Barbey, S.; Queguiner, G. Tetra-
hedron Lett. 1993, 34, 1605–1608; (c) Turck, A.; Ple, N.;
Trohay, D.; Ndzi, B.; Queguiner, G. J. Heterocyclic Chem.
1992, 29, 699–702; (d) Ple, N.; Turck, A.; Bardin, F.;
Queguiner, G. J. Heterocyclic Chem. 1992, 29, 467–470; (e)
Turck, A.; Ple, N.; Mojovic, L.; Queguiner, G.
J. Heterocyclic Chem. 1990, 27, 1377–1381.
15. Solberg, J.; Undheim, K. Acta Chem. Scand. 1989, 43, 62–
68.
16. To determine the selectivity of the second substitution, we
removed the remaining chloride of 9 [white solid; 1H
NMR (CDCl3): 7.50–7.55 (m, 6H), 8.01–8.02 (m, 2H),
8.50–8.51 (m, 2H), 8.81 (s, 1H); MS [C16H11ClN2]: m/z
(M+): Calcd 266, found 266] by hydrogenation. The
chemical shifts of the 1H NMR spectrum of the corre-
sponding product were identical to the one obtained for 3.
17. Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37,
3387–3388.
18. Padwa, A.; Smolanoff, J.; Wetmore, S. I., Jr. J. Org.
Chem. 1973, 38, 1333–1340.
19. Allen, D. W.; Buckland, D. J.; Hutley, B. G.; Oades, A. C.;
Turner, J. B. J. Chem. Soc. Perkin Trans. 1 1977, 621–624.
1
20. Compound 13: white solid. H NMR (CDCl3): 7.51–7.53
(m, 3H), 7.81–7.82 (m, 2H), 8.80 (s, 1H); MS
[C10H6BrClN2]: m/z (M+): Calcd 268, found 268.
21. Coppola, G. M.; Hardtmann, G. E.; Huegi, B. S.
J. Heterocycl. Chem. 1980, 17, 1479–1482.
22. Compound 15: white solid. 1H NMR (CDCl3): 4.15 (s,
3H), 7.19 (m, 2H), 7.27–7.38 (m, 6H), 7.48 (d, J = 8.0 Hz,
2H). 8.56 (s, 1H); MS [C17H14N2O]: m/z (M+): Calcd 262,
found 262.
23. Strekowski, L. Roczniki Chem. 1975, 49, 1017–1024.
24. Compound 17: white solid. 1H NMR (CDCl3): 4.08 (s,
3H), 7.44–7.53 (m, 5H), 8.36 (s, 1H); MS [C11H9ClN2O]:
m/z (M+): Calcd 220, found 220. Compound 18: white
solid. 1H NMR (CDCl3): 4.16 (s, 3H), 7.26–7.28 (t,
J = 8.8 Hz, 1H), 7.40–7.50 (m, 5H), 7.62 (d, J = 8.8 Hz,
2H), 8.51 (s, 2H), 8.61 (s, 1H); MS [C17H14N2O]: m/z
(M+): Calcd 262, found 262.
25. (a) Hoffman-La Roche Patent CH 397694, 1966; Chem
Abstr. 1966, 64, 19633d; (b) Kloetzer, W.; Schantl, J.
Monatsh. Chem. 1963, 94, 1190–1197.
1
26. To determine the selectivity in 20 [white solid; H NMR
(CDCl3): 4.12 (s, 3H), 7.45–7.55 (m, 5H), 8.39 (s, 1H); MS
C11H9ClN2O]: m/z (M+): Calcd 220, found 220], we
compared the spectroscopic data of its dechlorinated
analogue with that of 5. Both compounds showed identical
1
chemical shifts in the H and 13C NMR spectra.
27. Brovarets, V. S.; Vydzhak, R. N.; Zyuk, K. V.; Drach, B.
S. Russ. J. Gen. Chem. 1993, 63, 884–886.