Canadian Research Chair in Therapeutic Chemistry (RR) and
from the Canadian Institutes for Health Research (SS).
Table 2 Inhibitory properties and relative activity for Gal-1 and -3
Inhibitory properties
(mM)
Relative activitya
Compound
no.
Notes and references
Galectin-1 Galectin-3 Galectin-1
Galectin-3
1 S. H. Barondes, D. N. Cooper, M. A. Gitt and H. Leffler, J. Biol.
Chem., 1994, 269, 20807.
3
14
15
16
17
18
19
20
. 5
1.25
. 5
5
2.5
1.25
not tested
0.02
1.25
5
. 5
. 5
. 5
. 5
. 10
40
. 10
10
20
40
10
. 10
. 10
. 10
. 10
2 L. Chiariotti, P. Salvatore, R. Frunzio and C. B. Bruni, Glycoconjugate
J., 2004, 19, 441; H. Horrie, Curr. Drug Targets, 2005, 6, 373.
3 D. N. W. Cooper and S. H. Barondes, Glycobiology, 1999, 9, 979.
4 J. Hirabayashi and K. Kasai, Glycobiology, 1993, 3, 297.
5 R. S. Bresalier, N. Mazurek, L. R. Stenberg, J. C. Byrd, C. K. Yunker,
P. Nangia-Makker and A. Raz, Gastroenterology, 1998, 115, 287.
6 B. N. Stillman, P. S. Mischel and L. G. Baum, Brain Pathol., 2005, 15,
124.
7 J. Zou, V. V. Glinsky, L. A. Landon, L. Matthews and S. L. Deutscher,
Carcinogenesis, 2005, 26, 309.
8 S. Sato and J. Nieminem, Glycoconjugate J., 2004, 19, 441; F. T. Liu,
Int. Arch. Allergy Immunol., 2005, 136, 385.
9 S. Califice, V. Castronovo and F. Van Den Brule, Int. J. Oncol., 2004,
25, 983; S. Nakahara, N. Oka and A. Raz, Apoptosis, 2005, 10, 267.
10 N. L. Perllo, K. E. Pace, J. J. Seilhamer and L. G. Baum, Nature, 1995,
378, 736; T. Szoke, K. Kayser, J. D. Baumhakel, I. Trojan, J. Furak,
L. Tislaviez, A. Horvath, K. Szluha, H.-J. Gabius and S. Andre´,
Oncology, 2005, 69, 167.
11 D. K. Hsu and F. T. Liu, Glycoconjugate J., 2004, 19, 507;
J. D. Hermandes and L. G. Baum, Glycobiology, 2002, 12, 127R.
12 M. Ouellet, S. Mercier, I. Pelletier, S. Bounou, J. Roy, J. Hirabayashi,
S. Sato and M. J. Tremblay, J. Immunol., 2005, 174, 4120.
13 J. A. F. Joosten, N. T. H. Tholen, F. A. E. Maate, A. J. Brouwer,
G. W. van Esse, D. T. S. Rijkers, R. M. J. Liskamp and R. J. Pieters,
Eur. J. Org. Chem., 2005, 3182; S. Hotha and S. Kashyap, J. Org.
Chem., 2006, 71, 364.
40
0.25
50
0.8
40 (13.3)c
1
1
3.2 (1.1)b
1
1
21 Gal
22 Lacc
a
50
0.8
Compounds 3 and 14–18 were compared to reference galactose 21 and
b
compound 20 was compared to lactose 22. Number in paren-
theses expresses the relative potency of each lactose unit in the triva-
lent derivative compared to lactose. c Lactose is y506 better than Gal.
compounds, while 15 did not have any activity, probably due to
the large size of the substituent on the triazole. The more stable
C-galactoside derivative 16 had inhibitory properties of 5 mM
against Gal-1 but no inhibition toward Gal-3. Isoxazoles carrying
two different substituents and aromatic 18 showed the best results
(1250 mM) having 40 times better affinity than the natural analog
21. No inhibition was observed against Gal-3 for 15–18, indicating
that no anomeric triazoles or isoxazoles had higher inhibitory
potency against Gal-3.
14 Y. Gao, A. Eguchi, K. Kakehi and Y. C. Lee, Bioorg. Med. Chem.,
2005, 13, 6151.
15 C. M. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 2002, 67,
3057.
16 F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman,
K. B. Sharpless and V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 210.
17 H. Wamho, in Comprehensive Heterocyclic Chemistry; A. R. Katritzky,
C. W. Rees and K. T. Potts, eds., Pergamon: Oxford, 1984, Vol. 5,
p. 669.
Unfortunately, anomeric triazole 19 wasn’t soluble enough for
testing even with 5% DMSO added. The C3-symmetrical lactoside
20 was designed for the reason described below. First, studies have
demonstrated that some galectins are dimeric and create a soluble
network in the presence of a multivalent ligand.29 Thus,
glycoclusters may increase affinity enhancement due to multivalent
effects and formation of soluble cross-linked lattices. Glycoclusters
with a valency of three were synthesized because it was previously
demonstrated that C3-symmetrical saccharide had good affinity
with galectins30 and symmetrical analogs provided simpler analysis
due to their intrinsic symmetry. As expected, trivalent lactoside 20
provided inhibitory properties of 20 mM against Gal-1 for relative
affinity of 40 that are 13 times better for each lactose unit.
Surprisingly, the multivalent effect did not exist for Gal-3 with
inhibitory properties of 250 mM and relative affinity of 3.2 which is
almost one lactose unit by galectins.
18 K.-I. Itoh, S. Takahashi, T. Ueki, T. Sugiyama, T. Takahashi and
C. A. Horiuchi, Tetrahedron Lett., 2002, 43, 7035.
19 H. Leffler and S. H. Barondes, J. Biol. Chem., 1986, 22, 10119.
20 P. So¨rme, Y. Qian, P.-G. Nyholm, H. Leffler and U. J. Nilsson,
ChemBioChem, 2002, 3, 183; P. So¨rme, P. Arnoux, B. Kahl-Knutsson,
H. Leffler, J. M. Rini and U. J. Nilsson, J. Am. Chem. Soc., 2005, 127,
1737; I. Cumpstey, A. Sundin, H. Leffler and U. J. Nilsson, Angew.
Chem., Int. Ed., 2005, 44, 5110.
21 B. A. Salameh, H. Leffler and U. J. Nilsson, Bioorg. Med. Chem. Lett.,
2005, 15, 3344.
22 R. Roy, F. D. Tropper, S. Cao and J. M. Kim, Phase Transfer Catalyst
Mechanism and Syntheses, ACS Symp. Ser., 1997, 659, 163.
23 T. B. Grindley, Synthetic oligosaccharides, ACS Symp. Ser., 1994, 560,
51.
24 T. Uchiyama, V. P. Vassilev, T. Kajimoto, W. Wong, H. Huang,
C.-C. Lin and C.-H. Wong, J. Am. Chem. Soc., 1995, 117, 5395.
25 S. Ohira, Synth. Commun., 1989, 19, 561.
26 F. M. Hausser and X. Hu, Org. Lett., 2002, 4, 977.
27 W. T. Butler, J. Immunol., 1963, 90, 663.
28 Concentration at 0.5 mM for galectin-4.
29 T. K. Dam, H.-J. Gabius, S. Andre´, H. Kaltner, M. Lensch and C. F.
Brewer, Biochemistry, 2005, 44, 12564; N. Ahmad, H.-J. Gabius,
S. Sabesan, S. Oscarson and C. F. Brewer, Glycobiology, 2004, 14, 817.
30 S. Andre´, B. Liu, H.-J. Gabius and R. Roy, Org. Biomol. Chem., 2003,
1, 3909.
In conclusion, isoxazoles and triazoles have potential as Gal-1
selective inhibitors over other galectins and compared well with
known inhibitors.20,21,31–33 The best inhibitors among the tested
series were triazole 14 and anomeric isoxazole 18 with inhibitory
properties of 1250 mM for both inhibitors. Simple 3-propynyl
galactoside 3 was a good candidate against Gal-3 and is a potential
lead structure for the further development of novel inhibitors.
Finally, we developed a potent trivalent inhibitor (20) of galectins
with inhibitory properties of 20 mM. It is probable that formation
of C3-symmetric analogs of 15 or 18 would provide even better
results. Although the above compounds are notably less efficient
than those described by Nilsson et al.,20,21 we used inhibition of
hemagglutination assays known to require higher concentrations.
This work received support from the Natural Science and
Engineering Research Council of Canada (NSERC) for a
31 R. T. Lee, Y. Ichikawa, H. J. Allen and Y. C. Lee, J. Biol. Chem., 1990,
265, 7874.
32 H. Ahmed, H. J. Allen, A. Sharma and K. L. Matta, Biochemistry,
1990, 29, 5315.
33 D. Gigue`re, S. Sato, C. St-Pierre, S. Sirois and R. Roy, Bioorg. Med.
Chem. Lett., 2006, 16, 1668.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 2379–2381 | 2381