B. O. Gudmundsson and C. L. Puckett, Angew. Chem., 2002, 114, 3586,
Angew. Chem., Int. Ed., 2002, 41, 3436; (g) C. E. Tucker, T. N. Majid
and P. Knochel, J. Am. Chem. Soc., 1992, 114, 3983; (h) R. W.
Hoffmann, P. G. Nell, R. Leo and K. Harms, Chem.–Eur. J., 2000, 6,
3359; (i) R. W. Hoffmann, B. Ho¨lzer, O. Knopff and K. Harms, Angew.
Chem., 2000, 112, 3206, Angew. Chem., Int. Ed., 2000, 39, 3072.
3 (a) L. Boymond, M. Rottla¨nder, G. Cahiez and P. Knochel, Angew.
Chem., 1998, 110, 1801, Angew. Chem., Int. Ed., 1998, 37, 1701; (b)
A. Boudier, L. O. Bromm, M. Lotz and P. Knochel, Angew. Chem.,
2000, 112, 4584, Angew. Chem., Int. Ed., 2000, 39, 4414; (c) A. E. Jensen,
W. Dohle, I. Sapountzis, D. M. Lindsay, V. A. Vu and P. Knochel,
Synthesis, 2002, 565; (d) P. Knochel, W. Dohle, N. Gommermann,
F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis and V. A. Vu, Angew.
Chem., 2003, 115, 4438, Angew. Chem., Int. Ed., 2003, 42, 4302.
4 (a) E. J. Corey and G. H. Posner, J. Am. Chem. Soc., 1968, 90, 5615; (b)
Y. Kondo, T. Matsudaira, J. Sato, N. Muraka and T. Sakamoto,
Angew. Chem., 1996, 108, 818, Angew. Chem., Int. Ed. Engl., 1996, 35,
736; (c) C. Piazza and P. Knochel, Angew. Chem., Int. Ed., 2002, 41,
3263; (d) X. Yang, T. Rotter, C. Piazza and P. Knochel, Org. Lett.,
2003, 5, 1229; (e) X. Yang and P. Knochel, Synlett, 2004, 81; (f) X. Yang,
A. Althammer and P. Knochel, Org. Lett., 2004, 6, 1665; (g) X. Yang
and P. Knochel, Synlett, 2004, 2303.
7 (a) A. T. Khan, E. Mondal, S. Ghosh and S. Islam, Eur. J. Org. Chem.,
2004, 2002; (b) R. Bernini, A. Coratti, G. Provenzano, G. Fabrizi and
D. Tofani, Tetrahedron, 2005, 61, 1821; (c) M. P. Groziak and L. Wei,
J. Org. Chem., 1991, 56, 4296; (d) M. P. Groziak and L. Wei, J. Org.
Chem., 1992, 57, 3776; (e) D. L. Comins and M. O. Killpack, J. Org.
Chem., 1990, 55, 69; (f) D. L. Comins and M. O. Killpack,
J. Org. Chem., 1987, 52, 104.
8 M. J. Haddadin, B. J. Agha and R. F. Tabri, J. Org. Chem., 1979, 44,
494.
9 V. Snieckus, Chem. Rev., 1990, 90, 879.
10 I. Sapountzis, W. Dohle and P. Knochel, Chem. Commun., 2001,
2068.
11 Preparation of 3-allyl-5-iodo-2-tosyloxybenzaldehyde (4c): a dry and
argon flushed 25 mL flask, equipped with a magnetic stirring bar and a
septum, was charged with CuCN (108 mg, 1.2 mmol) and dry THF
(4 mL). A solution of neophyllithium (1.3 M in Et2O, 1.8 mL, 2.4 mmol)
was added at 278 uC. After stirring at rt for 10 min, the reaction
mixture was cooled to 278 uC and transferred by cannula into a mixture
of 3,5-diiodo-2-tosyloxybenzaldehyde (1b, 528 mg, 1.0 mmol) in dry
THF (5 mL) at 278 uC. The resulting mixture was stirred at 278 uC for
20 min. Allyl bromide (360 mg, 3.0 mmol) was added and the reaction
mixture was stirred at rt for 30 min. The reaction mixture was quenched
with saturated aqueous NH4Cl solution (5 mL) and poured into water
(15 mL). The aqueous phase was extracted with CH2Cl2 (3 6 20 mL).
The organic fractions were washed with brine (30 mL), dried over
Na2SO4 and concentrated in vacuo. The residue was purified by flash-
chromatography to give the desired product 4c (415 mg, 94% yield) as a
colorless oil.
5 (a) J. Otera, Modern Carbonyl Chemistry, Wiley-VCH, Weinheim, 2000;
(b) J. R. Hanson, Functional Group Chemistry, RSC Publishing, UK,
2001.
6 (a) F. F. Kneisel, M. Dochnahl and P. Knochel, Angew. Chem., Int. Ed.,
2004, 43, 1017; (b) F. F. Kneisel, H. Leuser and P. Knochel, Synthesis,
2005, 2625.
2488 | Chem. Commun., 2006, 2486–2488
This journal is ß The Royal Society of Chemistry 2006