ACS Combinatorial Science
Technology Note
of KDR Kinase Inhibitors: Improvements in Physical Properties
Enhance Cellular Activity and Phamacokinetics. Bioorg. Med. Chem.
Lett. 2002, 12, 3537−3541.
Mr. Patrick Mullins for purification assistance, and Dr. Anabella
Villalobos for support.
(8) For selected examples of oxidations of other low-valent sulfur
precursors, see: (a) Wright, S. W.; Hallstrom, K. N. A Convenient
Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from
Heteroaryl Thiols. J. Org. Chem. 2006, 71, 1080−1084. (b) Woolven,
ABBREVIATIONS
■
PMC, parallel medicinal chemistry; SAR, structure−activity-
relationship; HPLC, high pressure liquid chromatography;
MeCN, acetonitrile; DCM, dichloromethane
́
H.; Gonzalez-Rodriguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C.
DABCO-Bis(sulfur dioxide), DABSO, as a Convenient Source of
Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and
Sulfamide Preparation. Org. Lett. 2011, 13, 4876−4878. (c) Johnson,
M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Masciti, V.;
Toste, F. D. Application of Fundamental Organometallic Chemistry to
the Development of a Gold-Catalyzed Synthesis of Sulfinate
Derivatives. Angew. Chem., Int. Ed. 2014, 53, 4404−4407.
REFERENCES
■
(1) (a) Brameld, K. A.; Kuhn, B.; Reuter, D. C.; Stahl, M. Small
Molecule Conformational Preferences Derived from Crystal Structure
Data. A Medicinal Chemistry Focused Analysis. J. Chem. Inf. Model.
2008, 48, 1−24. (b) Chang, C.-P.; Wu, C.-H.; Song, J.-S.; Chou, M.-
C.; Wong, Y.-C.; Lin, Y.; Yeh, Y.-K.; Sadani, A. A.; Ou, M.-H.; Chen,
K.-H.; Chen, P.-H.; Kuo, P.-C.; Tseng, C.-T.; Chang, K.-H.; Tseng, S.-
L.; Chao, Y.-S.; Hung, M.-S.; Shia, K.-S. Discovery of 1-(2,4-
Dichlorophenyl)-N-(piperidin-1-yl)-4-((pyrrolidine-1-sulfonamido)-
methyl)-5-(5-((4-(trifluoromethyl)phenyl)ethynyl)thiophene-2-yl)-
1H-pyrazole-3-carboxamide as a Novel Peripherally Restricted
Cannabinoid-1 Receptor Antagonist with Significant Weight-Loss
Efficacy in Diet-Induced Obese Mice. J. Med. Chem. 2013, 56, 9920−
9933.
(2) (a) Caddick, S.; Wilden, J. D.; Bush, H. D.; Wadman, S. N.; Judd,
D. B. A New Route to Sulfonamides via Intermolecular Radical
Addition to Pentafluorophenyl Vinylsulfonate and Subsequent
Aminolysis. Org. Lett. 2002, 4, 2549−2551. (b) Caddick, S.; Wilden,
J. D.; Judd, D. B. Direct Synthesis of Sulfonamides and Activated
Sulfonate Esters from Sulfonic Acids. J. Am. Chem. Soc. 2004, 126,
1024−1025. (c) Ruano, J. L. C.; Parra, A.; Yuste, F.; Mastranzo, V. M.
Mild and General Method for the Synthesis of Sulfonamides. Synthesis
2008, 2008, 311−319. (d) Moon, S.-Y.; Nam, J.; Rathwell, K.; Kim,
W.-S. Copper-Catalyzed Chan-Lam Coupling between Sulfonyl Azides
and Boronic Acids at Room Temperature. Org. Lett. 2014, 16, 338−
341.
(3) (a) Rosen, B. R.; Ruble, J. C.; Beauchamp, T. J.; Navarro, A. Mild
Pd-Catalyzed N-Arylation of Methanesulfonamide and Related
Nucleophiles: Avoiding Potentially Genotoxic Reagens and By-
products. Org. Lett. 2011, 13, 2564−2567.
(4) (a) Baskin, J. M.; Wang, Z. A Mild, Convenient Synthesis of
Sulfinic Acid Salts and Sulfonamides from Alkyl and Aryl Halides.
Tetrahedron Lett. 2002, 43, 8479−8483. (b) Deeming, A. S.; Russell,
C. J.; Willis, M. C. Combining Organometallic Reagents, the Sulfur
Dioxide Surrogate DABSO, and Amines: A One-Pot Preparation of
Sulfonamides, Amenable to Array Synthesis. Angew. Chem., Int. Ed.
2015, 54, 1168−1171. (c) Johnson, M. G.; Gribble, M. W., Jr.; Houze,
J. B.; Paras, N. A. Convenient Route to Secondary Sulfinates:
Application to the Stereospecific Synthesis of α-C-Chiral Sulfona-
mides. Org. Lett. 2014, 16, 6248−6251.
(5) Markwalder, J. A.; Arnone, M. R.; Benfield, P. A.; Boisclair, M.;
Burton, C. R.; Chang, C.-H.; Cox, S. S.; Czerniak, P. M.; Dean, C. L.;
Deleniak, D.; Grafstrom, R.; Harrison, B. A.; Kaltenbach, R. F., III;
Nugiel, D. A.; Rossi, K. A.; Sherk, S. R.; Sisk, L. M.; Stouten, P.;
Trainor, G. L.; Worland, P.; Seitz, S. P. Synthesis and Biological
Evaluation of 1-Aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one
Inhibitors of Cyclin-Dependent Kinases. J. Med. Chem. 2004, 47,
5894−5911.
(6) For the synthesis of 3 and its use as a precursor for vinamidinium
salts, see: Matthews, D. P. Synthesis of N-[3-(dimethylamino)-2-
(substituted thio)-2-propenylidene]-N-methylmethanaminium salts
via 2-(alkylthio)- and 2-(arylthio)-3-(dimethylamino)acroleins. J. Org.
Chem. 1984, 49, 2823−2824.
(7) The use of 2-bromo-3-(dimethylamino)acrolein was also
considered to synthesize the 4-Br-pyrazole followed by a thio-coupling
reaction. This route was not pursued due to the increased step count,
see: Fraley, M. E.; Rubino, R. S.; Hoffman, W. F.; Hambaugh, S. R.;
Arrington, K. L.; Hungate, R. W.; Bilodeau, M. T.; Tebben, A. J.;
Rutledge, R. Z.; Kendall, R. L.; McFall, R. C.; Huckle, W. R.; Coll, K.
E.; Thomas, K. A. Optimization of a Pyrazole[1,5-a]pyrimidine Class
(9) For a selective example of the oxidative cleavage of benzyl
thioethers, see: Wang, M.; Gao, M.; Miller, K. D.; Sledge, G. W.;
Zheng, Q.-H. [11C]GSK2126458 and [18F]GSK2126458, The First
Radiosynthesis of New Potential PET Agents for Imaging of PI3K and
mTOR in Cancers. Bioorg. Med. Chem. Lett. 2012, 22, 1569−1574.
(10) We found that treatment of a solution of HCl in MeCN with
NCS rapidly formed a homogenous yellow solution, presumably
because of the formation of Cl2, see: Mahajan, T.; Kuman, L.; Dwivedi,
K.; Agarwal, D. D. Efficient and Facile Chlorination of Industrially-
Important Aromatic Compounds using NaCl/p-TsOH/NCS in
Aqueous Media. Ind. Eng. Chem. Res. 2012, 51, 3881−3886.
(11) For an example of strategic use of parallel medicinal chemistry
in a drug discovery program, see: Claffey, M. M.; Helal, C. J.; Verhoest,
P. R.; Kang, Z.; Fors, K. S.; Jung, S.; Zhong, J.; Bundesmann, M. W.;
Hou, X.; Liu, S.; Kleiman, R. J.; Vanase-Frawley, M.; Schmidt, A. W.;
Menniti, F.; Schmidt, C. J.; Hoffman, W. E.; Hajos, M.; McDowell, L.;
O’Connor, R. E.; MacDougall-Murphy, M.; Fonseca, K. R.; Becker, S.
L.; Nelson, F. R.; Liras, S. Application of Structure-Based Drug Design
and Parallel Chemistry ot Identify Selective, Brain Penetrant, In Vivo
Active Phosphodiesterase 9A Inhibitors. J. Med. Chem. 2012, 55,
9055−9068.
(12) No quality controls were run on the purity of the hydrazines
that were ordered from the internal chemical file prior to library
execution. However, for those hydrazines that failed to afford products
for both amines used, samples were ordered retrospectively and they
were found to have decomposed during storage. These false-negative
results are neither reported in the table nor calculated into the library
success rate.
(13) For selected examples of pyrazole syntheses in parallel, see:
(a) Vickerstaffe, E.; Warrington, B. H.; Ladlow, M.; Ley, S. V. Fully
Automated Polymer-Assisted Synthesis of 1,5-Biaryl Pyrazoles. J.
Comb. Chem. 2004, 6, 332−339. (b) Sidique, S.; Ardecky, R.; Su, Y.;
́
Narisawa, S.; Brown, B.; Millan, J. L.; Sergienko, E.; Cosford, N. D. P.
Design and Synthesis of Pyrazole Derivatives as Potent and Selective
Inhibitors of Tissue-Nonspecific Alkaline Phophatase (TNAP). Bioorg.
Med. Chem. Lett. 2009, 19, 222−225. (c) Ma, W.; Peterson, B.; Kelson,
A.; Laborde, E. Efficient Synthesis of Trisubstituted Pyrazoles and
Isoxazoles Using a Traceless “Catch and Release” Solid-Phase Strategy.
J. Comb. Chem. 2009, 11, 697−703. (d) Pendri, A.; Dodd, D. S.; Chen,
J.; Cvijic, M. E.; Kang, L.; Baska, R. A.; Carlson, K. E.; Burford, N. T.;
Sun, C.; Ewing, W. R.; Gerritz, S. W. Solid Phase Synthesis of 1,5-
Diarylpyrazole-4-carboxamides: Discovery of Antagonists of the CB-1
Receptor. ACS Comb. Sci. 2012, 14, 197−204.
(14) An insightful reviewer asked for the same reaction sequence to
be demonstrated using hydroxylamine to generate isoxazole-4-sulfonyl
fluoride. Despite condensation of 3 with hydroxylamine hydrochloride
proceeding smoothing to afford the thioether, no desired sulfonyl
1
fluoride could be isolated after oxidation. Crude H NMR analysis
indicated successful oxidative cleavage; however, multiple attempts at
purification and isolation failed.
(15) Johnson, T. B.; Sprague, J. M. A New Method for the
Preparation of Alkyl Sulfonyl Chlorides. J. Am. Chem. Soc. 1936, 58,
1348−1352.
D
ACS Comb. Sci. XXXX, XXX, XXX−XXX