Investigacio´n del Ca´ncer (ISCiii, RTICCC ICI-GI-Na10/200). D.
T. thanks CSIC for an I3P postdoctoral position. D. G.-C. thanks
MEC for an FPI grant. The authors thank Prof. Julio Delgado
Mart´ın for his helpful comments.
Chem.–Eur. J., 2005, 11, 3502–3510; (b) D. Tejedor, F. Garc´ıa-Tellado,
J. J. Marrero-Tellado and P. de Armas, Chem.–Eur. J., 2003, 9,
3122–3131; (c) P. de Armas, F. Garc´ıa-Tellado, J. J. Marrero-Tellado,
D. Tejedor, M. A. Maestro and J. Gonza´lez-Platas, Org. Lett., 2001, 3,
1905–1908.
5 (a) S. Ma, Chem. Rev., 2005, 105, 2829–2871; (b) J. L. Methot and
W. R. Roush, Adv. Synth. Catal., 2004, 346, 1035–1050; (c) X. Lu,
C. Zhang and Z. Xu, Acc. Chem. Res., 2001, 34, 535–544.
6 (a) A. W. McCulloch and A. G. McInnes, Can. J. Chem., 1974, 52,
3569–3576; (b) F. E. Heikes and H. E. Simmons, J. Org. Chem., 1973,
38, 2845–2851.
7 For selected examples of 1,3-DCRs involving nitrones and allenes, see:
(a) T. Aftab, R. Grigg, M. Ladlow, V. Sridharan and M. Thomton-Pett,
Chem. Commun., 2002, 1754–1755; (b) M. P. S. Ishar and K. Kumar,
Tetrahedron Lett., 1999, 40, 175–176; (c) B. Zhao and S. Eguchi,
Tetrahedron, 1997, 53, 9575–9584; (d) A. Padwa, M. Meske and Z. Ni,
Tetrahedron, 1995, 51, 89–106; (e) A. Padwa, W. H. Bullock, D. N. Kline
and J. Perumattam, J. Org. Chem., 1989, 54, 2862–2869 and references
cited therein; (f) G. A. Schiehser, Tetrahedron, 1989, 45, 6631–6644.
8 For the synthesis and properties of these heterocycles, see: (a)
P. Aschwanden, D. E. Frantz and E. M. Carreira, Org. Lett., 2000, 2,
2331–2333 and references cited therein; (b) J. J. Tufarillio, in 1,3-Dipolar
Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984, vol. 2;
(c) J. P. Freeman, Chem. Rev., 1983, 83, 241–261.
Notes and references
{ 1H NMR (CDCl3, 500 MHz): d 0.92 (t, 3H, J = 7 Hz), 1.37 (m, 4H),
1.66 (q, 2H, J = 7.5 Hz), 2.72 (dt, 1H, J = 7.5 and 13.8 Hz), 2.80 (dt, 1H, J =
7.5 and 13.8 Hz), 3.62 (s, 3H), 4.05 (d, 1H, J = 12.8 Hz), 4.33 (d, 1H, J =
12.8 Hz), 5.10 (s, 1H), 7.19 (m, 2H), 7.30 (m, 8H), 7.57 (d, 1H, J = 12.0 Hz).
13C NMR (CDCl3, 100 MHz): d 13.9, 22.3, 26.1, 26.7, 31.4, 50.9, 63.6, 72.3,
102.9, 127.2 (2C), 127.6, 127.8, 128.3 (2C), 128.4 (2C), 129.5 (2C), 135.6,
141.6, 165.1, 168.5. IR (CHCl3, cm21) 1645.9, 1693.3. Anal. Calcd for
C23H27NO3: C, 75.59; H, 7.45; N, 3.83. Found: C, 75.80; H, 7.33; N,
3.91%. MS, m/z (relative intensities) 365 (M+, 3.3), 288 (17.3), 274 (11.8),
211 (12.4), 193 (6), 189 (5), 176 (5.4), 149 (8.5), 131 (5.9), 116 (4.4), 105
(37.2), 91 (100), 77 (13.6).
1 (a) Organic Synthesis in Water, ed. P. A. Grieco, Blackie Academic and
Professional, London, UK, 1998; (b) R. Breslow, Water as a solvent for
chemical reactions, in Green Chemistry: Frontiers in Benign Chemical
Syntheses and Processes, ed. P. T. Anastas and T. C. Williamson,
Oxford University Press, New York, 1998, ch. 13.
2 (a) C.-J. Li, Chem. Rev., 2005, 105, 3095–3166; (b) U. M. Lindstro¨m,
Chem. Rev., 2002, 102, 2751–2772; (c) for excellent discussions on the
acceleration of organic reactions through aqueous solvent effects, see:
M. C. Pirrung, Chem.–Eur. J., 2005, 12, 1312–1317; (d) S. Otto and
J. B. F. N. Engerberts, Org. Biomol. Chem., 2003, 2809–2820.
9 The term ‘‘on water’’ has been coined to denote the reactions of
insoluble reactants suspended on water. S. Narayan, J. Muldoon,
M. G. Finn, V. V. Fokin, H. C. Kolb and K. B. Sharpless, Angew.
Chem., Int. Ed., 2005, 44, 3275–3279.
10 LiCl increases the hydrophobic effect. P. H. von Piel and T. Schleich,
Acc. Chem. Res., 1969, 2, 257–265.
11 The experimentally observed bad catalytic activity of the Ph3P could be
due to a phosphorus-driven rearrangement of alkynoate 2c to ethyl 2,3-
butadienoate,5 a worse dipolarophile and an excellent precursor of
phosphorus-containing allylic anions IV (Scheme 1).
12 (a) The 1,3-DCR of nitrones and conjugated alkynes usually affords
mixtures of both regioisomers. For a discussion, see: H. G. Aurich,
M. Franzke, H. P. Kesselheim and M. Rohr, Tetrahedron, 1992, 48,
669–682; (b) for an interesting density functional study of 1,3-DCR
between nitrones and allenes, see: K. Kavitha and P. Venuvanalingam,
J. Chem. Soc., Perkin Trans. 2, 2002, 2130–2139.
13 The electronic differences between both heteroatoms usually determines
the chemical reactivity of the allenolates and, as a consequence, the
chemical outcome of the catalytic process. For a recent example, see:
Y.-L. Shi and M. Shi, Org. Lett., 2005, 7, 3057–3060. For other
examples, see ref. 5.
3 (a) N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and
C. F. Barbas, III, J. Am. Chem. Soc., 2006, 128, 734–735; (b) Y. Hayashi,
T. Sumiya, J. Takahashi, H. Gotoh, T. Urushima and M. Shoji, Angew.
Chem., Int. Ed., 2006, 45, 958–961; (c) Y.-S. Wu, J. Cai, Z.-Y. Hu and
G.-X. Lin, Tetrahedron Lett., 2004, 45, 8949–8952; (d) A. Cordova and
C. F. Barbas, III, Tetrahedron Lett., 2003, 44, 1923–1926; (e)
A. Cordova, W. Notz and C. F. Barbas, III, Chem. Commun., 2002,
3024–3025; (f) T. Dickerson and K. D. Janda, J. Am. Chem. Soc., 2002,
124, 3220–3221; (g) D. B. Ramachary, N. S. Chowdari and C. F. Barbas,
III, Tetrahedron Lett., 2002, 43, 6743–6746; (h) A. B. Northrup and
D. W. C. MacMillan, J. Am. Chem. Soc., 2002, 124, 2458–2460; (i)
V. K. Aggarwal, D. K. Dean, A. Mereu and R. Williams, J. Org.
Chem., 2002, 67, 510–514.
4 (a) For a concept article, see: D. Tejedor, D. Gonza´lez-Cruz, A. Santos-
Expo´sito, J. J. Marrero-Tellado, P. de Armas and F. Garc´ıa-Tellado,
2800 | Chem. Commun., 2006, 2798–2800
This journal is ß The Royal Society of Chemistry 2006