Y. Sohtome, Yu. Hashimoto, K. Nagasawa
SHORT COMMUNICATION
b) M. T. Allingham, A. Howard-Jones, P. J. Murphy, D. A.
Thomas, P. W. R. Caulkett, Tetrahedron Lett. 2003, 44, 8677;
c) T. Ooi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2003, 125,
2054; d) H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 2006,
128, 732; e) T. Marcelli, R. N. S. van der Haas, J. H. van Maar-
seveen, H. Hiemstra, Angew. Chem. Int. Ed. 2006, 45, 929; dia-
stereoselective Henry reaction with chiral aldehydes, see; f) D.
Ma, Q. Pan, F. Han, Tetrahedron Lett. 2002, 43, 9401; g) E. J.
Corey, F.-Y. Zhang, Angew. Chem. Int. Ed. 1999, 38, 1931; Aza-
Henry reaction, see: h) B. M. Nugent, R. A. Yoder, J. N. John-
ston, J. Am. Chem. Soc. 2004, 126, 3418; i) T. Okino, S. Naka-
mura, T. Furukawa, Y. Takemoto, Org. Lett. 2004, 6, 625; j) X.
Xu, T. Furukawa, T. Okino, H. Miyabe, Y. Takemoto, Chem.
Eur. J. 2006, 12, 466; k) T. P. Yoon, E. N. Jacobsen, Angew.
Chem. Int. Ed. 2005, 44, 466; l) F. Fini, V. Sgarzani, D. Pet-
tersen, R. P. Herrera, L. Bernardi, A. Ricci, Angew. Chem. Int.
Ed. 2005, 44, 7975; m) C. Palomo, M. Oiarbide, A. Laso, R.
Lopez, J. Am. Chem. Soc. 2005, 127, 17622; n) L. Bernardi, F.
Fini, R. P. Herrera, A. Ricci, V. Sgarzani, Tetrahedron 2006,
62, 375.
In conclusion, highly enantio- and syn-selective Henry
reactions have been achieved by using the guanidine-thio-
urea bifunctional organocatalyst 1 under mild biphasic re-
action conditions. This reaction is applicable to a variety of
aldehydes and nitroalkanes, and was successfully utilized in
a straightforward synthesis of (4S,5R)-epi-cytoxazone (5).
Experimental Section
Typical Procedure for Enantioselective and syn-Selective Henry Re-
action of 2e with 3b: To
a mixture of (S,S)-1e (12.9 mg,
0.0112 mmol), KI (9.3 mg, 0.0558 mmol) and nitroethane (3b)
(80.1 µL, 1.12 mmol) in toluene (1.12 mL)/8 m KOH(aq)
(1.12 mL) was added cyclohexanecarboxaldehyde (2e) (13.4 µL,
0.112 mmol) at 0 °C. The resulting mixture was stirred vigorously
at 0 °C for 24 h. Then saturated NH4Cl(aq) was added, and the
organic layer was extracted with ethyl acetate. The extracts were
dried with MgSO4, filtered, and concentrated in vacuo, and the
residue was purified by column chromatography on silica gel (n-
hexane/ethyl acetate, 20:1, 10:1, and chloroform/methanol, 9:1) to
give 4e (16.0 mg, 77%); 1e was recovered (12.8 mg, 99%). Relative
stereochemistry and diastereoselectivity (syn/anti = 99:1) of 4e were
determined based upon the reported 1H NMR data.[15] [α]2D6 = –6.7
[5]
[6]
H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh, M.
Shibasaki, J. Org. Chem. 1995, 60, 7388.
a) K. Nagasawa, A. Georgieva, H. Takahashi, T. Nakata, Tet-
rahedron 2000, 56, 187; b) K. Nagasawa, A. Georgieva, H. Tak-
ahashi, T. Nakata, Tetrahedron 2001, 57, 8959; c) T. Kita, A.
Georgieva, Y. Hashimoto, T. Nakata, K. Nagasawa, Angew.
Chem. Int. Ed. 2002, 41, 2832; d) Y. Sohtome, Y. Hasimoto, K.
Nagasawa, Adv. Synth. Catal. 2005, 347, 1643; diastereoselec-
tive Henry reaction using 1, see: e) Y. Sohtome, N. Takemura,
T. Iguchi, Y. Hashimoto, K. Nagasawa, Synlett 2006, 144.
Reviews, see: a) P. R. Schreiner, Chem. Soc. Rev. 2003, 32, 289;
b) P. M. Pihko, Angew. Chem. Int. Ed. 2004, 43, 2062; asym-
metric reaction using Jacobsen’s catalyst, see: c) Y. Takemoto,
Org. Biomol. Chem. 2005, 3, 4299; d) M. S. Taylor, E. N. Ja-
cobsen, Angew. Chem. Int. Ed. 2006, 45, 1520; e) D. E. Fuerst,
E. N. Jacobsen, J. Am. Chem. Soc. 2005, 127, 8964, and refer-
ences cited therein; Takemoto’s bifunctional catalyst, see: f) Y.
Hoashi, T. Okino, Y. Takemoto, Angew. Chem. Int. Ed. 2005,
44, 4032, and references cited therein; bis-thiourea-type cata-
lyst, see: g) Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagas-
awa, Tetrahedron Lett. 2004, 45, 5589; other catalysts, see: h)
Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Chem.
Pharm. Bull. 2004, 52, 477; i) B. Vakulya, S. Varga, A. Csam-
pai, T. Soos, Org. Lett. 2005, 7, 1967; j) R. P. Herrera, V. Sgarz-
ani, L. Bernardi, A. Ricci, Angew. Chem. Int. Ed. 2005, 44,
6576.
(c = 0.52, CHCl ). IR (neat): ν = 2925, 2852, 1552, 1450, 1391 cm–1.
˜
3
1H NMR (400 MHz, CDCl3): δ = 4.72 (dq, J = 6.8, 6.8 Hz, 1 H),
3.65 (dd, J = 6.8, 4.9 Hz, 1 H), 2.13 (br. s, 1 H), 1.78–1.65 (m, 4
H), 1.53 (d, J = 6.7 Hz, 3 H), 1.48–0.94 (m, 7 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 85.5, 77.2, 39.9, 30.0, 26.3, 26.2, 26.1, 25.9,
16.6 ppm. The enantiomeric excess of 4e (93% ee) was determined
by means of chiral HPLC analysis [CHIRALPAC AD-H; 0.46 cm
(diameter)×25 cm (length); n-hexane/2-propanol, 97:3; 1.0 mL/
min; minor: 16.8 min, major: 25.3 min].
[7]
Supporting Information (see footnote on the first page of this arti-
cle): Spectroscopic data for 4a–d and 4f–4p, and synthesis of 5.
Acknowledgments
This research was supported by the Nagase Science and Technol-
ogy Foundation. Y. S. is grateful for a JSPS Research Fellowship
for Young Scientists. We thank Dr. Sakamoto (RIKEN) for kindly
providing the spectra of synthetic (4S,5R)-epi-cytoxazone (5).
As in the Henry reaction of nitromethane (3b);[6d] potassium
iodide was effective to improve the enantiomeric excess of the
nitro alcohol adduct 4a.
[8]
[9]
Relative stereochemistry and absolute stereochemistry of 4a
[1] L. Henry, C. R. Hebd. Seances Acad. Sci. 1895, 120, 1265.
[2] For recent reviews, see: a) C. Palomo, M. Oiarbide, A. Mielgo,
Angew. Chem. Int. Ed. 2004, 43, 5442; b) F. A. Luzio, Tetrahe-
dron 2001, 57, 915; c) N. Ono, The Nitro Group in Organic
Synthesis, Wiley-VCH, New York, 2001; d) M. Shibasaki, H.
Gröger, in Comprehensive Asymmetric Catalysis, vol. III (Eds.:
E. N. Jacobsen, A. Pfaltz, H, Yamamoto), Springer, Berlin,
1999, pp. 1075–1090; e) M. Shibasaki, H. Gröger, M. Kanai,
in Comprehensive Asymmetric Catalysis, suppl. 1 (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Heidelberg,
2004, pp. 131–133..
[3] a) H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am.
Chem. Soc. 1992, 114, 4418; b) B. M. Trost, V. S. C. Yeh, An-
gew. Chem. Int. Ed. 2002, 41, 861; c) D. A. Evans, D. Seidel,
M. Rueping, H. W. Lam, J. T. Shaw, C. W. Downey, J. Am.
Chem. Soc. 2003, 125, 12692; d) C. Christensen, K. Juhl, R. G.
Hazell, K. A. Jorgensen, J. Org. Chem. 2002, 67, 4875; e) C.
Palomo, M. Oiarbide, A. Laso, Angew. Chem. Int. Ed. 2005,
44, 3811.
1
were determined based upon the reported H NMR chemical
shift and [α]D value.[5]
[10]
[11]
The concentration of potassium hydroxide strongly influences
the enantioselectivities of the nitro alcohols 4.
In the case of benzaldehyde, diastereo- and enantioselectivity
were low (dr = 63:37, 16% and 0% ee, respectively). Applica-
tion of alternative catalysts to aromatic aldehydes is under in-
vestigation.
Isolation and structure determination of (4R,5R)-cytoxazone,
see: a) H. Kakeya, M. Morishita, K. Kobinata, M. Osono, M.
Ishizuka, H. Osada, J. Antibiot. 1998, 51, 1126; b) H. Kakeya,
M. Morishita, H. Koshino, T. Morita, K. Kobayashi, H. Os-
ada, J. Org. Chem. 1999, 64, 1052; first synthesis and recent
synthesis of (4R,5R)-cytoxazone and/or 5, see: c) Y. Sakamoto,
A. Shiraishi, J. Seonhee, T. Nakata, Tetrahedron Lett. 1999, 40,
4203; d) Z. Tokic-Vujosevic, G. Petrovic, B. Rakic, R. Matovic,
R. N. Saicic, Synth. Commun. 2005, 35, 435; e) S. Tosaki, R.
Tsuji, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2005, 127,
2147; f) N. R. Swamy, P. Krishnaiah, N. S. Reddy, Y. Venkates-
warlu, J. Carbohydr. Chem. 2004, 23, 217; g) S. Milicevic, R.
[12]
[4] Enantioselective Henry reaction, see: a) R. Chinchilla, C. Na-
jera, P. Sanchez-Agullo, Tetrahedron: Asymmetry 1994, 5, 1393;
2896
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 2894–2897