pressant screen, discodermolide was later shown to have
antimitotic activity that results from its binding to microtu-
bules.5 Discodermolide is a particularly attractive drug
candidate because it maintains activity against multidrug
resistant organisms6 and because it demonstrates synergism
with taxol.7,8 Because of the difficulty in obtaining this
valuable compound from its deep-sea source, drug develop-
ment has necessitated its preparation by total synthesis.
Among the impressive total syntheses that have been
reported,9,10 Schreiber’s original synthesis,11 the “gram-scale”
preparation by Smith,12 and the subsequent “practical”
synthesis of Paterson13 are noteworthy for having supplied
materials for biological testing. Proceeding on the premise
that discodermolide will indeed become available in sub-
stantial amounts, the Novartis group has scaled up a “hybrid”
synthesis and, with synthetic material, advanced discoder-
molide to phase I clinical trials.14
on the chiral aldol strategy for the chain extension of an
aldehyde derived from the Roche ester 3 (Figure 3). For
Retrosynthesis of discodermolide quickly reveals probable
disconnects through or adjacent to the 8,9- and 13,14-olefinic
bonds. Consequently, the total syntheses of this target have
generally relied on strategies in which an anti, syn stereotriad-
containing building block, functionalized on both ends
(Figure 2), is parlayed into three more advanced intermedi-
Figure 3. Origins of key building blocks in the chiral pool.
example, Smith’s “common precursor” or “CP” 2 was
prepared in eight steps from the Roche ester 3.15 There are
two notable exceptions to this rule. In almost simultaneous
disclosures, Dias16 and Day17 and later the Novartis group18
have described the use of recoverable auxiliaries (see 6,
Figure 3) as the sources of chiral induction in Evans aldol
condensations with methacrolein. The resulting stereodiads
were then converted to the stereotriad-containing lactone 5.
Lactone 5 has been converted to the more advanced
discodermolide intermediate 4 (see 6 f 5 f 4), a precursor
to both the C-1-C-6 and C-9-C-14 synthons in the Smith19
and Novartis20 syntheses. It has also been employed in a total
synthesis of sanglifehrin A21 and converted to a useful
Horner-Wadsworth-Emmons reagent.22 Recently, Myles
Figure 2. Functionalized syn, anti stereotriad building blocks for
polypropionate construction.
ates, appropriately extended and/or activated for sequential
coupling.
In general, the stereotriad-containing building blocks for
discodermolide synthesis have been prepared by variations
(4) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K.
J. Org. Chem. 1990, 55, 4912. Additions and corrections: J. Org. Chem.
1991, 56, 1346.
(5) (a) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R.
E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996,
35, 243. (b) Hung, D. T.; Chen J.; Schreiber S. L. Chem. Biol. 1996, 3,
287. (c) Klein, L. E.; Freeze, B. S.; Smith, A. B., III; Horwitz, S. B. Cell
Cycle 2005, 4, 501. (d) Escuin, D.; Kline, E. R.; Giannakakou, P. Cancer
Res. 2005, 65, 9021.
(6) Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R.
E.; Day, B. W.; Hamel, E. Mol. Pharmacol. 1997, 52, 613.
(7) Huang, G. S.; Lopez-Barcons, L.; Freeze, B. S.; Smith, A. B., III;
Goldberg, G. L.; Horwitz, S. B.; McDaid, H. M. Clin. Cancer Res. 2006,
12, 298.
(8) (a) Honore, S.; Kamath, K.; Braguer, D.; Horwitz, S. B.; Wilson, L.;
Briand, C.; Jordan, M. A. Cancer Res. 2004, 64, 4957. (b) Martello, L. A.;
McDaid, H. M.; Regl, D. L.; Yang, C.-P. H.; Meng, D.; Pettus, T. R. R.;
Kaufman, M. D.; Arimoto, H.; Danishefsky, S. J.; Smith, A. B., III; Horwitz,
S. B. Clin. Cancer Res. 2000, 6, 1978.
(11) (a) Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. J. Am. Chem.
Soc. 1996, 118, 11054. (b) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.;
Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 12621.
(12) Smith, A. B., III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche,
M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823.
(13) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N.
J. Am. Chem. Soc. 2001, 123, 9535.
(14) Mickel, S. J.; Niederer, D.; Daeffler, R.; Osmani, A.; Kuesters, E.;
Schmid, E.; Schaer, K.; Gamboni, R.; Chen, W.; Loeser, E.; Kinder, F. R.,
Jr.; Konigsberger, K.; Prasad, K.; Ramsey, T. M.; Repic, O.; Wang, R.-M.;
Florence, G.; Lyothier, I.; Paterson, I. Org. Process Res. DeV. 2004, 8,
122.
(15) Smith, A. B., III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche,
M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823.
(9) A review of the total syntheses prior to 2003: Paterson, I.; Florence,
G. J. Eur. J. Org. Chem. 2003, 12, 2193.
(16) Dias, L. C.; Bau, R. Z.; de Sousa, M. A.; Zukerman-Schpector, J.
Org. Lett. 2002, 4, 4325.
(17) Day, B. W.; Kangani, C. O.; Avor, K. S. Tetrahedron: Asymmetry
2002, 13, 1161.
(18) Loiseleur, O.; Koch, G.; Wagner, T. Org. Process Res. DeV. 2004,
8, 597.
(19) Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman,
M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem.
Soc. 2000, 122, 8654.
(10) For contributions that describe improvements on the reports cited
in ref 9, see: (a) Smith, A. B., III; Freeze, B. S.; Xian, M.; Hirose, T. Org.
Lett. 2005, 7, 1825-1828. (b) Smith, A. B.; Freeze, B. S.; Brouard, I.;
Hirose, T. Org. Lett. 2003, 5, 4405. (c) Paterson, I.; Lyothier, I. J. Org.
Chem. 2005, 70, 5494. (d) Paterson, I.; Delgado, O.; Florence, G. J.;
Lyothier, I.; O’Brien, M.; Scott, J. P.; Sereinig, N. J. Org. Chem. 2005, 70,
150. (e) Paterson, I.; Lyothier, I. Org. Lett. 2004, 6, 4933.
3542
Org. Lett., Vol. 8, No. 16, 2006