Self-Assembly of Cavity-Cored Metallodendrimers
A R T I C L E S
such covalent synthetic protocols often suffer from time-
consuming procedures and unsatisfactory yields resulting from
steric congestions. Compared to the conventional stepwise
formation of covalent bonds, the self-assembly process driven
by noncovalent interactions that is now universally recognized
to be crucial in the proliferation of all biological organisms offers
considerable synthetic advantages, including significantly fewer
steps, fast and facile formation of the final products, and inherent
defect-free assembly. As a consequence, attention has recently
turned to the self-assembly of dendrimers to provide well-
defined nanoscale architectures8 via a variety of noncovalent
interactions such as electrostatic interactions,9 hydrogen bond-
ing10 and metal-ligand coordination.11,12
Stimulated by the fact that natural pore-forming proteins play
a critical role in the biological process, acting as viral helical
coats13 and transmembrane channels,14 quite a few attempts have
been undertaken to build artificial supramolecular arrays with
porous structures by taking advantage of noncovalent interac-
tions.15 In particular, cavity-cored dendrimers have recently
received considerable attention because of their elaborate
structures and potential applications in delivery and recogni-
tion.16 For example, dendritic folate rosettes as ion channels in
lipid bilayers have been prepared, providing new insights into
the mechanism of ion transportation in biological process.10g
Previously, Percec et al. reported a library of amphiphilic
dendritic dipeptides that self-assemble into helical pores both
in solution and in bulk.16h However, considering nature’s simple
but delicate approach to desirable biomaterials, the design and
construction of cavity-cored dendrimers with predefined shape,
size, and ultimately function is still extraordinarily challenging.
In the past decade, the formation of discrete supramolecular
species by coordination-driven self-assembly has evolved to be
a well-established process.17 This approach offers a variety of
opportunities for the preparation of nanoscopic supramolecular
ensembles of predetermined shape, size, and symmetry, such
as molecular squares,18 rectangles,19 rhomboids,20 triangles,21
and hexagons.22 Encouraged by the power and versatility of this
methodology, we envisioned that the construction of metallo-
dendrimers with well-designed and controlled cavities would
be realized by the proper choice of subunits with predefined
angles and symmetry. In addition, the possibility to fine-tune
the size and shape of the cavities in metallodendrimers would
help provide an enhanced understanding of the geometrical
requirements necessary for molecular self-assembly. Further-
more, this strategy would likely give rise to the design and
synthesis of novel supramolecular species with desired func-
tionality arising from their unique interior cavities and dendritic
exteriors.
Recently we reported the self-assembly of the first metallo-
dendrimers exhibiting a nonplanar hexagonal cavity with an
internal core radius of approximately 1.6 nm, by the combination
(16) (a) Fischer, M.; Lieser, G.; Rapp, A.; Schnell, I.; Mamdouh, W.; De Feyter,
S.; De Schryver, F. C.; Hoger, S. J. Am. Chem. Soc. 2004, 126, 214-222.
(b) Hoger, S.; Bonrad, K.; Moller, M.; Mourran, A.; Beginn, U. J. Am.
Chem. Soc. 2001, 123, 5651-5659. (c) Gorman, C. B.; Smith, J. C. J. Am.
Chem. Soc. 2000, 122, 9342-9343. (d) Wang, P.; Moorefield, C. N.;
Newkome, G. R. Org. Lett. 2004, 6, 1197-1200. (e) Niu, Y.; Crooks,
R. M. In Dendrimers and Nanoscience; Astruc, D. Ed.; Compte-Rendus
Chimie 6; Elsevier: Paris, 2003; p 989. (f) Daniel, M.-C.; Astruc, D. Chem.
ReV. 2004, 104, 293-346. (g) Wendland, M. S.; Zimmerman, S. C. J. Am.
Chem. Soc. 1999, 121, 1389-1390. (h) Percec, V.; Dulcey, A. E.;
Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin,
S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.;
Vinogradov, S. A. Nature 2004, 430, 764-768.
(17) (a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853-
908. (b) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-983. (c)
Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005,
38, 371-380. (d) Fujita, M. Chem. Soc. ReV. 1998, 6, 417-425. (e)
Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022-
2043. (f) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res. 2001, 34,
759-771. (g) Swiegers, G. F.; Malefetse, T. J. Chem. ReV. 2000, 100,
3483-3538. (h) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond,
K. N. Acc. Chem. Res. 2005, 38, 351-360.
(18) (a) Pak, J. J.; Greaves, J.; McCord, D. J.; Shea, K. J. Organometallics
2002, 21, 3552-3561. (b) Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2002,
124, 4554-4555. (c) Liu, X.; Stern, C. L.; Mirkin, C. A. Organometallics
2002, 21, 1017-1019. (d) Han, G.; Dong, G.; Duan, C.-Y.; Mo, H.; Meng,
Q.-J. New J. Chem. 2002, 26, 1371-1377. (e) Sun, S.-S.; Anspach, J. A.;
Lees, A. J. Inorg. Chem. 2002, 41, 1862-1869. (f) Cotton, F. A.; Lin, C.;
Murillo, C. A. J. Am. Chem. Soc. 2001, 123, 2670-2671. (g) Cotton,
F. A.; Daniels, L. M.; Lin, C.; Murillo, C. A.; Yu, S.-Y. J. Chem. Soc.,
Dalton Trans. 2001, 502-504.
(19) (a) Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Lin, R.-J.; Chang,
I.-J.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2002,
41, 5323-5325. (b) Cui, Y.; Ngo, H. L.; Lin, W. Inorg. Chem. 2002, 41,
1033-1035. (c) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc.
2001, 123, 9634-9641. (d) Kuehl, C. J.; Mayne, C. L.; Arif, A. M.; Stang,
P. J. Org. Lett. 2000, 2, 3727-3729.
(20) (a) Schmitz, M.; Leininger, S.; Fan, J.; Arif, A. M.; Stang, P. J.
Organometallics 1999, 18, 4817-4824. (b) Habicher, T.; Nierengarten,
J.-F.; Gramlich, V.; Diederich, F. Angew. Chem., Int. Ed. 1998, 37, 1916-
1919.
(21) (a) Schweiger, M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. Inorg. Chem.
2002, 41, 2556-2559. (b) Martin-Redondo, M. P.; Scoles, L.; Sterenberg,
B. T.; Udachin, K. A.; Carty, A. J. J. Am. Chem. Soc. 2005, 127, 5038-
5039. (c) Cotton, F. A.; Murillo, C. A.; Wang, X.; Yu, R. Inorg. Chem.
2004, 43, 8394-8403. (d) Cotton, F. A.; Lin, C.; Murillo, C. A. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 4810-4813. (e) Kryschenko, Y. K.; Seidel,
S. R.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2003, 125, 5193-5198.
(f) Qin, Z.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2002, 41, 3967-
3974.
(22) (a) Stang, P. J.; Persky, N. E.; Manna, J. J. Am. Chem. Soc. 1997, 119,
4777-4778. (b) Leininger, S.; Schmitz, M.; Stang, P. J. Org. Lett. 1999,
1, 1921-1923. (c) MacDonnell, F. M.; Ali, M. M. J. Am. Chem. Soc. 2000,
122, 11527-11528. (d) Huang, X.-C.; Zhang, J.-P.; Chen, X.-M. J. Am.
Chem. Soc. 2004, 126, 13218-13219.
(8) For selected reviews: (a) Zeng, F.; Zimmerman, S. C. Chem. ReV. 1997,
97, 1681-1712. (b) Newkome, G. R.; He, E.; Moorefield, C. N. Chem.
ReV. 1999, 99, 1689-1746. (c) Bosman, A. W.; Janssen, H. M.; Meijer,
E. W. Chem. ReV. 1999, 99, 1665-1688. (d) Fre´chet, J. M. J. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 4782-4787.
(9) (a) Yamaguchi, N.; Hamilton, L. M.; Gibson, H. W. Angew. Chem., Int.
Ed. 1998, 37, 3275-3279. (b) Gibson, H. W.; Yamaguchi, N.; Hamilton,
L.; Jones, J. W. J. Am. Chem. Soc. 2002, 124, 4653-4665. (c) Elizarov,
A. M.; Chiu, S.-H.; Glink, P. T.; Stoddart, J. F. Org. Lett. 2002, 4, 679-
682. (d) Zong, Q.-S.; Zhang, C.; Chen, C.-F. Org. Lett. 2006, 8, 1859-
1862.
(10) (a) Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin, S. V.
Science 1996, 271, 1095. (b) Corbin, P. S.; Lawless, L. J.; Li, Z.; Ma, Y.;
Witmer, M. J.; Zimmerman, S. C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
5099-5104. (c) Leung, K. C.-F.; Arico, F.; Cantrill, S. J.; Stoddart, J. F.
J. Am. Chem. Soc. 2005, 127, 5808-5810. (d) Franz, A.; Bauer, W.; Hirsch,
A. Angew. Chem., Int. Ed. 2005, 44, 1564-1567. (e) Rudzevich, Y.;
Rudzevich, V.; Moon, C.; Schnell, I.; Fischer, K.; Bohmer, V. J. Am. Chem.
Soc. 2005, 127, 14168-14169. (f) Wong, C.-H.; Chow, H.-F.; Hui, S.-K.;
Sze, K.-H. Org. Lett. 2006, 8, 1811-1814. (g) Sakai, N.; Kamikawa, Y.;
Nishii, M.; Matsuoka, T.; Kato, T.; Matile, S. J. Am. Chem. Soc. 2006,
128, 2218-2219.
(11) For selected reviews on metallodendrimers: (a) Balzani, V.; Campagna,
S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31,
26-34. (b) Gorman, C. B.; Smith, J. C. Acc. Chem. Res. 2001, 34, 60-71.
(c) Astruc, D.; Blais, J.-C.; Cloutet, E.; Djakovitch, L.; Rigaut, S.; Ruiz,
J.; Sartor, V.; Vale´rio, C. Top. Curr. Chem. 2000, 210, 229-259. (d)
Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem.
Res. 2001, 34, 181-190.
(12) (a) Huisman, B.-H.; Scho¨nher, H.; Wilhelm, T. S.; Friggeri, A.; Van Manen,
H.-J.; Menozzi, E.; Vancso, G. J.; Van Veggel, F. C. J. M.; Reinhoud,
D. N. Angew. Chem., Int. Ed. 1999, 38, 2248-2251. (b) Enomoto, M.;
Aida, T. J. Am. Chem. Soc. 1999, 121, 874-875. (c) He, E.; Newkome,
G. R.; Godinez, L. A.; Baker, G. R. J. Am. Chem. Soc. 2000, 122, 9993-
10006. (d) Rio, Y.; Accorsi, G.; Armarol, N.; Felder, D.; Levillain, E.;
Nierengarten, J.-F. Chem. Commun. 2002, 2830-2831. (e) Newkome,
G. R.; Kim, H. J.; Choi, K. H.; Moorefield, C. N. Macromolecules 2004,
37, 6268-6274.
(13) Klug, A. Angew. Chem., Int. Ed. 1983, 22, 565-582.
(14) (a) Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.;
Cohen, S. L.; Chait, B. T.; MacKinnon, R. Science 1998, 280, 69-77. (b)
van den Berg, B.; Clemons, W. M., Jr.; Collinson, I.; Modis, Y.; Hartmann,
E.; Harrison, S. C.; Rapoport, T. A. Nature 2004, 427, 36-44.
(15) (a) Ghadiri, M. R.; Granja, J. R.; Millligan, R. A.; McRee, D. E.;
Khazanovich, N. Nature 1993, 366, 324-327. (b) Schmitt, J.-L.; Stadler,
A.-M.; Kyritsakas, N.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 1598-
1624. (c) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew.
Chem., Int. Ed. 2001, 40, 989-1011. (d) Hill, D. J.; Mio, M. J.; Prince,
R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001, 101, 3893-4011. (e)
Sakai, N.; Matile, S. Chem. Commun. 2003, 2514-2523.
9
J. AM. CHEM. SOC. VOL. 129, NO. 7, 2007 2121