J. Kno¨ll, H.-J. Kno¨lker / Tetrahedron Letters 47 (2006) 6079–6082
6081
with its diastereoisomer 10.12 The spectroscopic data
(UV, IR, 1H NMR, 13C NMR, and MS) have been com-
pared with those described for the natural product.4
ral catalyst enantiomeric to 12, which can be prepared
from L-fructose,15a should lead to natural (+)-epocar-
bazolin A (+)-1a.
For the enantioselective synthesis of epocarbazolin A 1a
we envisaged an asymmetric epoxidation using chiral
non-racemic dioxiranes.13–15 Shi used catalytic amounts
of the chiral ketone 12, prepared from D-fructose 11
(Scheme 3), and oxoneÒ as stoichiometric oxidizing
agent for the in situ generation of a chiral dioxirane.15a
The method of Shi has been applied to the asymmetric
catalytic epoxidation of a wide variety of olefins includ-
ing conjugated trisubstituted double bonds.15–18
Acknowledgments
We thank the Fonds der Chemischen Industrie for
financial support of our project.
References and notes
1. Transition Metal Complexes in Organic Synthesis, Part
80. For part 79, see: Choi, T. A.; Czerwonka, R.; Fro¨hner,
W.; Krahl, M. P.; Reddy, K. R.; Franzblau, S. G.;
Kno¨lker, H.-J. ChemMedChem 2006 1, in press.
2. Reviews: (a) Chakraborty, D. P.; Roy, S. In Progress in
the Chemistry of Organic Natural Products; Herz, W.,
Grisebach, H., Kirby, G. W., Steglich, W., Tamm, C.,
Eds.; Springer: Wien, 1991; Vol. 57, p 71; (b) Chakra-
borty, D. P. In The Alkaloids; Cordell, G. A., Ed.;
Academic Press: New York, 1993; Vol. 44, p 257; (c)
Kno¨lker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303;
(d) Kno¨lker, H.-J. Curr. Org. Synth. 2004, 1, 309.
Using a modified Shi procedure,15b the tri-O-silylcarb-
azomadurin A 7a was transformed to the (ꢀ)-tri-O-silyl-
epocarbazolin A (ꢀ)-8a (Scheme 4).19 Removal of the
silyl protecting groups afforded (ꢀ)-epocarbazolin A
(ꢀ)-1a.20 The value for the specific rotation of our syn-
26
26
thetic (ꢀ)-1a is ½aꢁD ꢀ55,20 while a value of ½aꢁD +75 has
been reported for the natural product.4 Therefore, we
concluded that using catalyst 12 the non-natural enan-
tiomer of epocarbazolin is formed preferentially. How-
ever, we have not yet been able to assign the absolute
configuration of our product. Assuming a linear correla-
tion of specific rotation and enantiomeric excess, an
enantioselectivity of 73% ee can be estimated for the
Shi epoxidation of 7a described above.
3. For recent novel synthetic approaches to carbazoles, see:
(a) Aygun, A.; Pindur, U. J. Heterocycl. Chem. 2003, 40,
¨
411; (b) Kno¨lker, H.-J.; Fro¨hner, W.; Reddy, K. R. Eur. J.
Org. Chem. 2003, 740; (c) Kno¨lker, H.-J.; Reddy, K. R.
Heterocycles 2003, 60, 1049; (d) Kno¨lker, H.-J.; Wolpert,
M. Tetrahedron 2003, 59, 5317; (e) Scott, T. L.; So¨derberg,
B. C. G. Tetrahedron 2003, 59, 6323; (f) Rawat, M.; Wulff,
W. D. Org. Lett. 2004, 6, 329; (g) Kno¨lker, H.-J.; Krahl,
M. P. Synlett 2004, 528; (h) Crich, D.; Rumthao, S.
Tetrahedron 2004, 60, 1513; (i) Benavides, A.; Peralta, J.;
Delgado, F.; Tamariz, J. Synthesis 2004, 2499; (j) Kno¨lker,
H.-J.; Fro¨hner, W.; Heinrich, R. Synlett 2004, 2705; (k)
Duval, E.; Cuny, G. D. Tetrahedron Lett. 2004, 45, 5411;
(l) Kuwahara, A.; Nakano, K.; Nozaki, K. J. Org. Chem.
2005, 70, 413; (m) Kataeva, O.; Krahl, M. P.; Kno¨lker,
H.-J. Org. Biomol. Chem. 2005, 3, 3099; (n) Pelly, S. C.;
Parkinson, C. J.; van Otterlo, W. A. L.; de Koning, C. B.
In summary, we have demonstrated the feasibility to
transform the carbazomadurins 2 into the epocarbazo-
lins 1. Epoxidation of the tri-O-silyl-protected carba-
zomadurins A and B with dimethyldioxirane provides
a non-stereoselective access to the epocarbazolins A
and B. Moreover, our initial investigation shows that
the Shi epoxidation can be utilized for an asymmetric
synthesis of the epocarbazolins 1. Application of the chi-
J. Org. Chem. 2005, 70, 10474; (o) Furstner, A.; Domo-
¨
O
OH
CH2OH
OH
O
O
stoj, M. M.; Scheiper, B. J. Am. Chem. Soc. 2005, 127,
11620; (p) Czerwonka, R.; Reddy, K. R.; Baum, E.;
Kno¨lker, H.-J. Chem. Commun. 2006, 711.
O
2 steps (49% yield)
ref.15a
HO
O
O
4. Nihei, Y.; Yamamoto, H.; Hasegawa, M.; Hanada, M.;
Fukagawa, Y.; Oki, T. J. Antibiot. 1993, 46, 25.
5. Kotada, N.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.;
Seto, H. J. Antibiot. 1997, 50, 770.
6. Kno¨lker, H.-J.; Kno¨ll, J. Chem. Commun. 2003, 1170.
7. Kno¨ll, J.; Kno¨lker, H.-J. Synlett 2006, 651.
8. (a) Adam, W.; Hadjiarapoglou, L. Top. Curr. Chem. 1993,
164, 45; (b) Murray, R. W. Chem. Rev. 1989, 89, 1187; (c)
Curci, R.; Dinoi, A.; Rubino, M. F. Pure Appl. Chem.
1995, 67, 811.
9. (a) Hanessian, S.; Lavalee, P. Can. J. Chem. 1975, 53,
2975; (b) Hanessian, S.; Lavalee, P. Can. J. Chem. 1977,
55, 562.
10. Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber.
1991, 124, 2377.
O
OH
11
12
Scheme 3. Synthesis of the Shi catalyst 12 from D-fructose 11.15a
R'3SiO
R'3SiO
HO
OSiR'3
CH3
OH
CH3
a
b
7a
N
H
N
H
HO
O
O
11. ( )-Epocarbazolin A ( )-1a: colorless powder; mp 150 °C
(dec.). UV (MeOH): k = 233, 250, 299, 345, 359 nm. IR
(DRIFT): m = 3461, 2955, 2929, 2869, 1620, 1585, 1523,
(
–
)-8a
(
–
)-1a
Scheme 4. Synthesis of (ꢀ)-epocarbazolin A (ꢀ)-1a. Protecting group:
1446, 1388, 1367, 1266, 1168, 1119, 1070, 988, 807 cmꢀ1
.
SiR0 =Sit-BuPh2. Reagents and conditions: (a) oxoneÒ, K2CO3,
1H NMR (500 MHz, acetone-d6): d = 0.970 (d,
J = 6.4 Hz, 3H), 0.972 (d, J = 6.4 Hz, 3H), 1.05 (s, 3H),
1.49–1.56 (m, 2H), 1.63–1.70 (m, 1H), 1.81–1.88 (m, 2H),
3
5 equiv 12, Bu4NHSO4, buffer, H2O/DME/hexane, rt, 8 h (18%); (b)
3 equiv TBAF, THF, rt (in the dark), 6 h (18%).