The absolute stereochemistry of cyclopropane 40 was confirmed
by X-ray crystallography43 (Scheme 11). Displacing phosphinate
40 with azide was not possible even under forcing conditions
(DMF, 110 ◦C) and mostly starting material was retrieved.
However, double transesterification with sodium methoxide in
refluxing methanol gave the desired c-hydroxy methyl ester 44
in a moderate yield.
9 U. S. Sørensen, T. J. Bleisch, A. E. Kingston, R. A. Wright, B. G.
Johnson, D. D. Schoepp and P. L. Ornstein, Bioorg. Med. Chem., 2003,
11, 197.
10 D. Fishlock, B. Perdicakis, H. J. Montgomery, J. G. Guillemette, E.
Jervis and G. A. Lajoie, Bioorg. Med. Chem., 2003, 11, 869.
11 D. Fishlock, J. G. Guillemette and G. A. Lajoie, J. Org. Chem., 2002,
67, 2352.
12 S. Shuto, S. Ono, Y. Hase, N. Kamiyama and A. Matsuda, Tetrahedron
Lett., 1996, 37, 641.
Cyclopropanation of bis-mesylate 38 to produce target cyclo-
propane 41 was best achieved with NaHMDS, although cyclic
sulfonate 45 was a by-product. The cyclic sulfonate was assigned
as the 7-membered rather than the 8-membered compound due
13 L. S. Tan, N. Yasuda, N. Yoshikawa, F. W. Hartner, K. K. Eng, W. R.
Leonard, F. R. Tsay, R. P. Volante and R. D. Tillyer, J. Org. Chem.,
2005, 70, 8027.
14 D. S. Coffey, M. K. Hawk, S. W. Pedersen and R. K. Vaid, Tetrahedron
Lett., 2005, 46, 7299.
15 R. Gonzalez, I. Collado, B. Lopez de Uralde, A. Marcos, L. M. Martin-
Cabrejas, C. Pedregal, J. Blanco-Urgoiti, J. Perez-Castells, M. Alejandro
Fernandez and S. L. Andis, Bioorg. Med. Chem., 2005, 13, 6556.
16 P. Rovero, M. Pellegrini, A. Di Fenza, S. Meini, L. Quartara, C. A.
Maggi, F. Formaggio, C. Toniolo and D. F. Mierke, J. Med. Chem.,
2001, 44, 274.
17 K.-H. Park and M. J. Kurth, Tetrahedron, 2002, 58, 8629.
18 M. Oba, N. Nishiyama and K. Nishiyama, Tetrahedron, 2005, 61, 8456.
19 J. Barluenga, F. Aznar, I. Gutierrez, S. Garcia-Granda and M. A.
Llorca-Baragano, Org. Lett., 2002, 4, 4273.
20 M. F. Brana, C. Guisado, L. F. Alguacil, E. Garrido, C. Perez-Garcia
and M. Ruiz-Gayo, Bioorg. Med. Chem. Lett., 2002, 12, 3561.
21 M. Pohlman and U. Kazmaier, Org. Lett., 2003, 5, 2631.
22 J. A. Miller, E. J. Hennessy, W. J. Marshall, M. A. Scialdone and S. T.
Nguyen, J. Org. Chem., 2003, 68, 7884.
23 P. Wipf and C. R. J. Stephenson, Org. Lett., 2005, 7, 1137.
24 M. Mart´ın-Vila`, N. Hanafi, J. M. Jime´nez, A. Alvarez-Larena, J. F.
Piniella, V. Branchadell, A. Oliva and R. M. Ortun˜o, J. Org. Chem.,
1998, 63, 3581.
25 J. M. Jime´nez, J. Rife´ and R. M. Ortun˜o, Tetrahedron: Asymmetry,
1996, 7, 537.
26 F. Gnad and O. Reiser, Chem. Rev., 2003, 103, 1603.
27 H. Lebel, J.-F. Marcoux, C. Molinaro and A. B. Charette, Chem. Rev.,
2003, 103, 977.
1
to striking similarities between the H NMR spectrum of this
compound and the previously isolated 7-membered sulfonate 32
(Scheme 9). Cyclopropane 41 was quite unstable and decomposed
during purification. Bis-tosylate 39 cyclised very cleanly using
NaHMDS (LDA and KHMDS returned the majority of starting
material) and mono-tosylate product 42 could be treated with
sodium azide without prior purification to give trans-cyclopropane
c-azido ester 43 in good yield and high enantiomeric excess.
In brief, we have demonstrated that one-step intramolecular
cyclisation is a useful way of constructing trans-cyclopropane
products devoid of any cis-cyclopropane side-products. The
synthetic routes presented herein are short (5–6 steps), starting
from cheap, commercially available starting materials, giving
orthogonally protected trans-cyclopropane c-amino acids in useful
overall yields (19–31%) and high enantiomeric excess (>92%
ee). Moreover, when bis-phosphinate activation is employed the
method can yield trans-cyclopropane c-hydroxy carboxylic esters
with terminal alkyl groups in good yield and high enantiomeric
excess.
28 A. S. Demir, C. Tanyeli, A. Cagir, M. N. Tahir and D. Ulku,
Tetrahedron: Asymmetry, 1998, 9, 1035.
29 J. Rife´ and R. M. Ortun˜o, J. Org. Chem., 1999, 64, 8958.
30 C. H. Stammer, Tetrahedron, 1990, 46, 2231.
31 C. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley and M. J. Gaunt,
Angew. Chem., Int. Ed., 2004, 43, 4641.
32 C. D. Papageorgiou, S. V. Ley and M. J. Gaunt, Angew. Chem., Int. Ed.,
2003, 42, 828.
33 C. Cativiela and M. D. D´ıaz-de-Villegas, Tetrahedron: Asymmetry,
2000, 11, 645.
Acknowledgements
We thank Dr John Davies for crystallography and the EPSRC
for financial assistance towards the purchase of the Nonius CCD
diffractometer. D. S. P. thanks the Alfred Benzon Foundation for
financial support.
34 N. Yoshikawa, L. Tan, N. Yasuda, R. P. Volante and R. D. Tillyer,
Tetrahedron Lett., 2004, 45, 7261.
35 D. Diez, P. Garcia, I. S. Marcos, N. M. Garrido, P. Basabe, H. B.
Broughton and J. G. Urones, Org. Lett., 2003, 5, 3687.
36 E. Bunuel, S. D. Bull, S. G. Davies, A. C. Garner, E. D. Savory, A. D.
Smith, R. J. Vickers and D. J. Watkin, Org. Biomol. Chem., 2003, 1,
2531.
References and notes
1 P. Wipf, J. T. Reeves, R. Balachandran and B. W. Day, J. Med. Chem.,
2002, 45, 1901.
2 J. M. Janjic, Y. Mu, C. Kendall, C. R. J. Stephenson, R. Balachandran,
B. S. Raccor, Y. Lu, G. G. Zhu, W. Xie, P. Wipf and B. W. Day, Bioorg.
Med. Chem., 2005, 13, 157.
3 L. Q. Sun, K. Takaki, J. Chen, S. Bertenshaw, L. Iben, C. D. Mahle, E.
Ryan, D. D. Wu, Q. Gao and C. Xu, Bioorg. Med. Chem. Lett., 2005,
15, 1345.
4 A. Armstrong and J. N. Scutt, Org. Lett., 2003, 5, 2331.
5 R. J. Mattson, J. D. Catt, D. J. Denhart, J. A. Deskus, J. L. Ditta,
M. A. Higgins, L. R. Marcin, C. P. Sloan, B. R. Beno, Q. Gao, M. A.
Cunningham, G. K. Mattson, T. F. Molski, M. T. Taber and N. J.
Lodge, J. Med. Chem., 2005, 48, 6023.
6 I. Collado, C. Pedregal, A. B. Bueno, A. Marcos, R. Gonzalez, J.
Blanco-Urgoiti, J. Perez-Castells, D. D. Schoepp, R. A. Wright, B. G.
Johnson, A. E. Kingston, E. D. Moher, D. W. Hoard, K. I. Griffey and
J. P. Tizzano, J. Med. Chem., 2004, 47, 456.
7 J. B. Schwarz, S. E. Gibbons, S. R. Graham, N. L. Colbry, P. R. Guzzo,
V. D. Le, M. G. Vartanian, J. J. Kinsora, S. M. Lotarski, Z. Li, M. R.
Dickerson, T. Z. Su, M. L. Weber, A. El Kattan, A. J. Thorpe, S. D.
Donevan, C. P. Taylor and D. J. Wustrow, J. Med. Chem., 2005, 48,
3026.
37 T. Nemoto, M. Ojika and Y. Sakagami, Tetrahedron Lett., 1997, 38,
5667.
38 T. Nemoto, G. Yoshino, M. Ojika and Y. Sakagami, Tetrahedron, 1997,
53, 16699.
39 R. Tanikaga, N. Shibata and T. Yoneda, J. Chem. Soc., Perkin Trans.
1, 1997, 2253.
40 H. Kolb, M. S. VanNiewenhze and K. B. Sharpless, Chem. Rev., 1994,
94, 2483.
41 T. Boesen, D. J. Fox, W. Galloway, D. S. Pedersen, C. R. Tyzack and S.
Warren, Org. Biomol. Chem., 2005, 3, 630.
42 D. J. Fox, S. Parris, D. S. Pedersen, C. R. Tyzack and S. Warren, Org.
Biomol. Chem., 2006, DOI: 10.1039/b606874j.
43 Crystal data for 40. C23H29O4P, M = 400.43, triclinic, space group
˚
P1, a = 5.8939(2), b = 8.5144(3), c = 11.3355(4) A, a = 82.108(2),
◦
3
˚
b = 87.448(2), c = 82.337(2) , U = 558.23(3) A , Z = 1, l(Mo-Ka)
= 0.147 mm−1, 5699 reflections collected at 180(2) K using an Oxford
Cryosystems Cryostream cooling apparatus, 3689 unique (Rint = 0.025);
R1 = 0.035, wR2 = 0.096 [I > 2r(I)], absolute structure parameter
−0.08(8). CCDC reference number 600428. For crystallographic data
in CIF or other electronic format see DOI: 10.1039/b606879k.
8 M. G. Moloney, Nat. Prod. Rep., 2002, 19, 597.
3116 | Org. Biomol. Chem., 2006, 4, 3113–3116
This journal is
The Royal Society of Chemistry 2006
©