6598 Deng et al.
Macromolecules, Vol. 39, No. 19, 2006
(19) Dante, S.; Advincula, R.; Frank, C. W.; Stroeve, P. Langmuir 1999,
15, 193.
(20) Wu, L. F.; Tuo, X. L.; Cheng, H.; Chen, Z.; Wang, X. G.
Macromolecules 2001, 34, 8005.
(21) Wang, G.; Tong, X.; Zhao, Y. Macromolecules 2004, 37, 8911.
(22) Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210/211,
831.
and used to investigate the H-aggregation and the colloidal
sphere formation through the gradual hydrophobic association
in the mixed aqueous-organic media. Results indicate that the
microphase transition and structure formation are closely related
with the water content in the systems. The polymeric chains
start to associate at the critical water content (CWC). CWC is
dependent on the initial concentration of the polymer in the THF
solution and is estimated to be 23 vol % when the initial
concentration is 1.0 mg/mL. When the water content reaches
37%, the fraction of associated chains in the dispersion is
estimated to be 99.5%. When the water content increases from
37 to 60 vol %, the clusters of associated chains undergo a
collapse. When the water content reaches about 60%, azo
chromophores of POAPB6P-AC start to form H-aggregates, as
indicated by the significant blue shift from 360 to 339 nm in
the UV-vis spectra. Meanwhile, the dominant structures in the
system transform from clusters to colloidal spheres after the
collapse. When THF in the microphase is almost completely
replaced by H2O, the colloidal structure is completely “frozen”
due to the free volume decrease and chain entanglement, which
is indicated by an obvious decrease of the isomerization rate
and degree. For the first time, the results indicate that in colloidal
sphere formation process the H-aggregation can occur only at
a specific stage, at which the azo chromophores are closely
packed, but their movements have not been completely restricted
by the surrounding chains.
(23) Halperin, A.; Tirrell, M.; Lodge, T. P. AdV. Polym. Sci. 1992, 100,
31.
(24) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley
& Sons Ltd.: New York, 2000; p 26.
(25) Sturmer, D. W.; Heseltine, D. W. In James, T. H., Ed.; The Theory of
the Photographic Process; Macmillan Publishing Co. Inc.: New York,
1977; p 194.
(26) Herz, A. H. Photogr. Sci. Eng. 1974, 18, 323.
(27) (a) McRae, E. G.; Kasha, M. J. Chem. Phys. 1958, 28, 721. (b) Philpott,
M. R.; Lee, J. W. J. Chem. Phys. 1972, 57, 2026.
(28) Vekshin, N. L. J. Photochem. Photobiol., B 1989, 3, 625.
(29) See, for example: (a) Monahan, A. R.; Blossey, D. F. J. Phys. Chem.
1970, 74, 4014. (b) Monahan, A. R.; Germano, J. J.; Blossey, D. F. J.
Phys. Chem. 1971, 75, 1227.
(30) See, for example: (a) Tinoco, I. J. Am. Chem. Soc. 1960, 82, 4785.
(b) Bolton, H. C.; Weiss, J. J. Nature (London) 1962, 195, 666.
(31) See, for example: (a) Spano, F. C.; Mukamel, S. J. Chem. Phys. 1989,
91, 683. (b) Yang, Y. J. Opt. Soc. Am. B 1991, 8, 981. (c) Misawa,
K.; Ono, H.; Minoshima, K.; Kobayashi, T. Appl. Phys. Lett. 1993,
63, 577. (d) Grad, J.; Hernandez, S.; Mukamel, S. Phys. ReV. A 1988,
37, 3835. (e) Steinhoff, R.; Chi, L. F.; Marowsky, G.; Mobius, D. J.
Opt. Soc. Am. B 1989, 6, 843.
(32) See, for example: (a) Kunitake, T. Angew. Chem., Int. Ed. Engl. 1992,
31, 709. (b) Anzai, J.-I.; Osa, T. Tetrahedron 1994, 50, 4039. (c)
Whitten, D. G.; Chen, L. H.; Geiger, H. C.; Perlstein, J.; Song, X. S.
J. Phys. Chem. B 1998, 102, 10098. (d) Kinoshita, T. J. Photochem.
Photobiol., B 1998, 42, 12. (e) Pedrosa, J.-M.; Romero, M. T. M.;
Camacho, L.; Mobius, D. J. Phys. Chem. B 2002, 106, 2583.
(33) Song, X. S.; Perlstein, J.; Whitten, D. G. J. Am. Chem. Soc. 1997,
119, 9144.
(34) (a) Hayashita, T.; Kurosawa, T.; Miyata, T.; Tanaka, K.; Igawa, M.
Colloid Polym. Sci. 1994, 272, 1611. (b) Yang, L.; Takisawa, N.;
Hayashita, T.; Shirahama, K. J. Phys. Chem. 1995, 99, 879. (c) Kang,
H.-C.; Lee, B. M.; Yoon, J.; Yoon, M. J. Colloid Interface Sci. 2000,
231, 255.
(35) See, for example: (a) Saremi, F.; Tieke, B. AdV. Mater. 1998, 10,
388. (b) Hong, J. D.; Park, E. S.; Park, A. L. Langmuir 1999, 15,
6515. (c) Hong, J. D.; Jung, B. D.; Kim, C. H.; Kim, K. Macromol-
ecules 2000, 33, 7905.
Acknowledgment. The financial support from the NSFC
under Projects 50533040 and 20374033 is gratefully acknowl-
edged.
Supporting Information Available: Scheme for synthesis of
OAPB6P and POAPB6P-AC; analytical data and spectra of products
of each step reaction for OAPB6P synthesis. This material is
References and Notes
(36) Li, Y. B.; He, Y. N.; Tong, X. L.; Wang, X. G. J. Am. Chem. Soc.
2005, 127, 2402.
(37) Li, Y. B.; Deng, Y. H.; He, Y. N.; Tong, X. L.; Wang, X. G. Langmuir
2005, 21, 6567.
(38) Li, Y. B.; Tong, X. L.; He, Y. N.; Wang, X. G. J. Am. Chem. Soc.
2006, 128, 2220.
(39) Li, Y. B.; Deng, Y. H.; Tong, X. L.; Wang, X. G. Macromolecules
2006, 39, 1108.
(40) Wang, H. P.; He, Y. N.; Tuo, X. L.; Wang, X. G. Macromolecules
2004, 37, 135.
(41) Rau, H. Photochemistry and Photophysics; Rabek, J. F., Ed.; CRC
Press: Boca Raton, FL, 1990; Vol. II, Chapter 4.
(42) Wu, L. F.; Tuo, X. L.; Cheng, H.; Chen, Z.; Wang, X. G.
Macromolecules 2001, 34, 8005.
(43) (a) Zhang, L. F.; Shen, H. W.; Eisenberg, A. Macromolecules 1997,
30, 1001. (b) Shen, H. W.; Zhang, L. F.; Eisenberg, A. J. Phys. Chem.
B 1997, 101, 4697.
(44) (a) Koppel, D. E. J. Chem. Phys. 1972, 57, 4814. (b) Berne, B.; Pecora,
R. Dynamic Light Scattering; Plenum Press: New York, 1976.
(45) Chu, B. Laser Light Scattering; Academic Press: New York, 1991.
(46) Burchard, W. Makromol. Chem., Macromol. Symp. 1988, 18, 1.
(47) Ma, Y. H.; Cao, T.; Webber, S. E. Macromolecules 1998, 31, 1773.
(48) Liu, S. Y.; Hu, T. J.; Liang, H. J.; Jiang, M.; Wu, C. Macromolecules
2000, 33, 8640.
(1) Kumar, G. S.; Nechers, D. C. Chem. ReV. 1989, 89, 1915.
(2) Xie, S.; Natansohn, A.; Rochon, P. Chem. Mater. 1993, 5, 403.
(3) Delaire, J. A.; Nakatani, K. Chem. ReV. 2000, 100, 1817.
(4) Natansohn, A.; Rochon, P. Chem. ReV. 2002, 102, 4139.
(5) Ikeda, T.; Horiuchi, S.; Karanjit, D. B.; Kurihara, S.; Tazuke, S.
Macromolecules 1990, 23, 36.
(6) Todorov, T.; Nikolova, L.; Tomova, N. Appl. Opt. 1984, 23, 4309.
(7) Rochon, P.; Batalla, E.; Natansohn, A. Appl. Phys. Lett. 1995, 66,
136.
(8) Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Appl. Phys. Lett. 1995,
66, 1166.
(9) Finkelmann, H.; Nishikawa, E.; Pereira, G. G.; Warmer, M. Phys.
ReV. Lett. 2001, 87, 015501.
(10) Li, M. H.; Keller, P.; Li, B.; Wang, X. G.; Brunet, M. AdV. Mater.
2003, 15, 569.
(11) Yu, Y. L.; Nakano, M.; Ikeda, T. Nature (London) 2003, 425, 145.
(12) Nikolova, L.; Todorov, T.; Ivanov, M.; Andruzzi, F.; Hvilsted, S.;
Ramanujam, P. S. Opt. Mater. 1997, 8, 255.
(13) Lee, S.-H.; Kumar, J.; Tripathy, S. K. Langmuir 2000, 16, 10482.
(14) Ichimura, K.; Oh, S. K.; Nakagawa, M. Science 2000, 288, 1624.
(15) Lvov, Y.; Yamada, S.; Kunitake, T. Thin Solid Films 1997, 300, 107.
(16) Wang, X.; Balasubramanian, S.; Li, L.; Jiang, X.; Sandman, D. J.;
Rubner, M. F.; Kumar, J.; Tripathy, S. K. Macromol. Rapid Commun.
1997, 18, 451.
(17) Laschewsky, A.; Wischerhoff, E.; Kauranen, M.; Persoons, A.
Macromolecules 1997, 30, 8304.
(18) Wang, X. G.; Balasubramanian, S.; Kumar, J.; Tripathy, S. K.; Li, L.
Chem. Mater. 1998, 10, 1546.
(49) Antonietti, M.; Heinz, S.; Schmidt, M.; Rosenauer, C. Macromolecules
1994, 27, 3276.
MA061335P