LETTER
Nucleophilic Addition Reactions of Nitriles to Nitrones
(2) For typical examples, see: (a) Merino, P.; Franco, S.;
1867
closure reaction,18 giving rise to N-methylaziridine 27
Merchan, F. L.; Tejero, T. J. Org. Chem. 2000, 65, 5575.
(b) Murahashi, S.; Imada, Y.; Kawakami, T.; Harada, K.;
Yonemushi, Y.; Tomita, N. J. Am. Chem. Soc. 2002, 124,
2888. (c) Kazuta, Y.; Abe, H.; Matsuda, A.; Shuto, S. J. Org.
Chem. 2004, 69, 9143. (d) Fu, Y.; Liu, Y.; Chen, Y.; Hügel,
H. M.; Wang, M.; Huang, D.; Hu, Y. Org. Biomol. Chem.
2012, 10, 7669.
with high diastereoselectivity.
In conclusion, we have developed a novel method for nu-
cleophilic addition reaction of nitriles to nitrones promot-
ed by TESOTf and Et3N under mild conditions.19 The
reaction appears to proceed through N-silyl ketene imine
formation in situ followed by a Mannich type addition re-
action. In contrast to the conventional addition reactions
using strong bases, the nonbasic, mild reaction conditions
of the present method tolerates various functional groups
and usually provides the β-aminonitrile derivatives in
high yields without causing β-elimination reactions or ret-
ro-addition reactions. The new method is expected to of-
fer an efficient route to base-sensitive β-aminonitrile
derivatives, which serve as useful intermediates in the
synthesis of biologically important compounds, including
β-amino acids and 1,3-diamines.
(3) (a) Aurich, H. G.; Schmidt, M.; Schwerzel, T. Chem. Ber.
1985, 118, 1086. (b) Babu, Y. S.; Chand, P.; Ghosh, A. K.;
Kotian, P. L.; Kumar, S. Y. PCT Int. Appl WO 2006002231,
2006. (c) Behr, J.; Chavaria, D.; Plantier-Royon, R. J. Org.
Chem. 2013, 78, 11477.
(4) For an excellent review of N-silyl ketene imines, see:
Denmark, S. E.; Wilson, T. W. Angew. Chem. Int. Ed. 2012,
51, 9980.
(5) (a) Notte, G. T.; Baxter Vu, J. M.; Leighton, J. L. Org. Lett.
2011, 13, 816. (b) Zhao, J.; Liu, X.; Luo, W.; Xie, M.; Lin,
L.; Feng, X. Angew. Chem. Int. Ed. 2013, 52, 3473.
(6) (a) Tanino, K.; Tomata, Y.; Shiina, Y.; Miyashita, M. Eur. J.
Org. Chem. 2006, 328. (b) Yamada, T.; Yoshimura, F.;
Tanino, K. Tetrahedron Lett. 2013, 54, 522.
Me
Ph
Me
Ph
OTES
CN
Me
Ph
Zn
H2SO4
Zn
TFA
NH
N
NH
O
(7) Yoshimura, F.; Torizuka, M.; Mori, G.; Tanino, K. Synlett
2012, 23, 251.
CN
NH2
MeOH
0 °C
(8) We could not detect N-silyl ketene imine 4 when monitoring
the reaction by 1H and 13C NMR spectroscopy. The
isomerization of 3 did not proceed in the absence of either
TMSOTf or Et3N. Accordingly, very reactive intermediate 4
was immediately protonated by triethylamine salt of triflic
acid generated in situ as a proton source, providing the
isomerized product 3.
(9) In this connection, Emde and Simchen reported that
silylation of acetonitrile with excess TMSOTf and Et3N in
ether gave a mixture of (Me3Si)2C=C=N(SiMe3) (44%) and
(Me3Si)3CCN (56%), see: Emde, H.; Simchen, G. Synthesis
1977, 6363.
(10) It is reported that the reactions of aldonitrones with TMSOTf
afford the corresponding N-trimethylsiloxyiminium ions,
which can be identified by NMR spectroscopy, see:
Camiletti, C.; Dhavale, D. D.; Gentilucci, L.; Trombini, C.
J. Chem. Soc., Perkin Trans. 1 1993, 3157.
(11) (a) Muller, G. W.; Shire, M. G.; Wong, L. M.; Corral, L. G.;
Patterson, R. T.; Chen, Y.; Stirling, D. I. Bioorg. Med. Chem.
Lett. 1998, 8, 2669. (b) Liu, M.; Sibi, M. P. Tetrahedron
2002, 58, 7991. (c) Fleming, F. F.; Yao, L.; Ravikumar, P.
C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
(12) Interestingly, the combination of TMSOTf and Et3N
smoothly promoted rearrangement of an aromatic
aldonitrone to the isomeric amide (Scheme 7).
MeOH
60 °C
86%
Me Me
Me Me
Me Me
71%
22
18h
23
Me
Me
OTES
Me
H2
Pd/C
N
N
O
NH
O
1 M HCl
CN
Ph
O
Ph
Ph
OH
MeOH
72%
THF
81%
Me Me
Me Me
Me Me
18h
24
25
Me
OH
N
LiAlH4
THF
60 °C
89%
Ph
NH2
Me Me
26
Me
Me
Ph
OTES
N
Ph
LDA
N
CN
CN
H
THF
0 °C
78%
Me
27
Me
18a
(dr = 90:10)
(dr = 60:40)
Scheme 6 Transformations of the addition products
Acknowledgment
TMSOTf (2 equiv)
Et3N (2 equiv)
–O
Ph
Me
H
We acknowledge Dr. Eri Fukushi and Mr. Yusuke Takata (GC-MS
& NMR Laboratory, Faculty of Agriculture, Hokkaido University)
for their mass spectral measurements. This work was supported by
JSPS KAKENHI Grant Number 24510290 and the Mitsubishi
Tanabe Pharma Award in Synthetic Organic Chemistry, Japan.
O
+
N
Ph
NHMe
DCE
0 °C to r.t., 75 min
85%
12
10
Scheme 7
Supporting Information for this article is available online
(13) Hamer, J.; Macaluso, A. Chem. Rev. 1964, 64, 473.
(14) (a) Mathieu, B.; Ghosez, L. Tetrahedron Lett. 1997, 38,
5497. (b) Ishii, A.; Kotera, O.; Saeki, T.; Mikami, K. Synlett
1997, 1145.
(15) All attempts to determine the relative stereochemistry of
nitrile 21d were unsuccessful.
at
10.1055/s-00000083.SunpfgIpi
o
o
nr
i
References and Notes
(1) For reviews, see: (a) Bloch, R. Chem. Rev. 1998, 98, 1407.
(b) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Synlett
2000, 442. (c) Lombardo, M.; Trombini, C. Synthesis 2000,
759. (d) Merino, P.; Tejero, T. Synlett 2011, 1965.
(16) The reason for the high stereoselectivity observed in the
formation of nitrile 21d is not yet clear.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 1863–1868