O. V. Singh, H. Han / Tetrahedron Letters 48 (2007) 7094–7098
7097
selective allylic aminations developed by other research
groups2–5 and should be of particular value in the
asymmetric synthesis of nitrogen-containing chiral
compounds.
Boc
Boc
HN
HN
RuCl3, NaIO4
CO2H
MeCN:CCl4:H2O
(1:1:1.5), 85%
12
11
9-BBN, THF, 0 º C,
then H2O2, NaOH,
0 oC to rt, 92%
Acknowledgments
Financial support from National Institute of Health
(GM 08194) and The Welch Foundation (AX-1534) is
gratefully acknowledged. We are also grateful to Dr.
K. Ditrich, BASF, Germany, for a generous gift of a
chiral amine for the synthesis of ligand L*.
Boc
HN
Boc
HN
CO2H
RuCl3, NaIO4
OH
MeCN:CCl4:H2O
(1:1:1.5), 90%
13
14
Scheme 2. Synthesis of N-Boc protected a- and b-amino acids.
References and notes
1. For reviews: (a) Takeuchi, R.; Kezuka, S. Synthesis 2006,
3349–3366; (b) Helmchen, G.; Dahnz, A.; Duebon, P.;
Schelwise, M.; Weihofen, R. Chem. Commun. 2007, 675–
691.
2. Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga,
N. J. Am. Chem. Soc. 2001, 123, 9525–9534.
Boc
HN
Boc
OH
TBDPS-Cl
HN
OsO4, K2CO3,
K3Fe(CN)6
OH
O
16
DMAP, TEA
CH2Cl2, 97%
t
-BuOH-H2O
1:1, 95%
Boc
15
HN
O
3. (a) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J.
Am. Chem. Soc. 2007, 129, 7508–7509; (b) Leitner, A.;
Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 15506–15514; (c) Leitner, A.; Shu, C.; Hartwig,
J. F. Org. Lett. 2005, 7, 1093–1096; (d) Kiener, C. A.; Shu,
C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003,
125, 14272–14273; (e) Ohmura, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2002, 124, 15614–15615; (f) Shu, C.; Leitner,
A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4797–
4800.
4. (a) Polet, D.; Alexakis, A.; Tissot-Croset, K.; Corminb-
oeuf, C.; Ditrich, K. Chem. Eur. J. 2006, 12, 3596–3609;
(b) Polet, D.; Alexakis, A. Org. Lett. 2005, 7, 1621–1624;
(c) Tissot-Croset, K.; Polet, D.; Alexakis, A. Angew.
Chem., Int. Ed. 2004, 43, 2426–2428.
OH
OH
Boc
O
HN
HN
17
OTBDPS
O
O
OH
18 (25%)
O
O
HN
Boc
1. NaH, THF
2. TBAF, THF
94%, 2 steps
OH
20; (-)-Cytoxazone
OTBDPS
O
OH
19 (65%)
Scheme 3. Asymmetric synthesis of (À)-cytoxazone.
5. (a) Weihofen, R.; Dahnz, A.; Brunner, B.; Streiff, S.;
Duebon, P.; Helmchen, G. Org. Lett. 2005, 7, 1239–1242;
(b) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen, G.
Chem. Commun. 2004, 896–897; (c) Lipowsky, G.; Helm-
chen, G. Chem. Commun. 2004, 116–117.
allylic amine 15 (from entry 6 of Table 2) generated an
inseparable mixture of syn- and anti-diols 16 and 17 in
the ratio of 3:7. The use of the (DHQD)2–PHAL/
(DHQ)2–PHAL ligand in the dihydroxylation reaction
did not affect the syn-/anti-ratio in any meaningful
way. Thus, the diol mixture was converted to the corre-
sponding TBDPS ethers 18 and 19, which were sepa-
rated by column chromatography. Upon treatment
with NaH in THF, 19 cyclized to form the O-TBDPS
protected (À)-cytoxazone, and the final deprotection of
the TBDPS group by TBAF provided (À)-cytoxazone
(20) in 53% overall yield in five steps starting from the
corresponding achiral ethyl allyl carbonate.
6. Singh, O. V.; Han, H. J. Am. Chem. Soc. 2007, 129, 774–
775.
7. For recent reviews for the decarboxylative allylation: (a)
Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem. 2005, 1715–
1726; (b) Tsuji, J. Proc. Jpn. Acad., Ser. B 2004, 80, 349–
358; For recent references on decarboxylative amination/
amidation: (c) Wang, C.; Tunge, J. A. Org. Lett. 2006, 8,
3211–3214; (d) Mellegaard-Waetzig, S. R.; Rayabarapu,
D. K.; Tunge, J. A. Synlett 2005, 2759–2762.
8. (a) Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew.
Chem., Int. Ed. 2006, 45, 5546–5549. Although the
reported catalytic conditions show some generality for
the intermolecular allylic amidation, di-tert-butyl imid-
odicarboxylate could not be used as a nitrogen nucleophile
under the ‘salt-free’ conditions. Furthermore, only two
allylic substrates were studied.; (b) Weihofen, R.; Dahnz,
A.; Tverskoy, O.; Helmchen, G. Chem. Commun. 2005,
3541–3543, sulfonamides were used as nucleophiles.
9. (a) Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004,
43, 4794–4797; (b) Evans, P. A.; Leahy, D. K. J. Am.
Chem. Soc. 2002, 124, 7882–7883; (c) Kim, H.; Lee, C.
Org. Lett. 2002, 4, 4369–4371; (d) Fagnou, K.; Lautens,
M. Angew. Chem., Int. Ed. 2002, 41, 26–47.
In summary, a highly regio- and enantioselective inter-
molecular allylic amidation reaction has been developed,
which employs [Ir(COD)Cl]2, a chiral phosphoramidite
ligand L*, and DBU in THF. The reaction operates
under completely ‘salt-free’ conditions, and proves to be
quite general, accommodating a wide variety of allylic
substrates and nitrogen nucleophiles. Also shown is
the possibility of one pot operation of the allylic amida-
tion reaction and subsequent selective/mono deprotec-
tion reaction. Since the developed allylic amidation
reaction can provide the N-Ac, N-Boc, and N-Cbz (three
popular nitrogen protection groups) protected chiral
allylic amines, it is nicely complementary to the stereo-
10. Tanaka, K.; Yoshifuji, S.; Nitta, Y. Chem. Pharm. Bull.
1988, 36, 3125–3129.