J. F. Gonza´lez et al. / Tetrahedron Letters 47 (2006) 6711–6714
6713
Table 2. Synthesis of N-(indole-2-carbonyl)amino acids 5
W. A.; Theoharides, A. D.; Anderson, P. S. J. Med. Chem.
1993, 36, 1291–1294.
7. Romero, D. L.; Morge, R. A.; Biles, C.; Berrios-Pena, N.;
˜
May, P. D.; Palmer, J. R.; Johnson, P. D.; Smith, H. V.;
Busso, M.; Tan, Ch.-K.; Voorman, R. L.; Reusser, F.;
Althaus, I. W.; Downey, K. M.; So, A. G.; Resnick, L.;
Tarpley, W. G.; Aristoff, P. A. J. Med. Chem. 1994, 37,
999–1014.
Starting
compound (yield %)
Product
R4
R5
R6
R7
R
R1
8. Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.;
Kawamoto, I.; Yasuzawa, T.; Takahashi, I.; Nakano, H.
J. Antibiot. 1990, 43, 1037–1038.
9. Kobayashi, E.; Okamoto, A.; Asada, N.; Okabe, M.;
Nagamura, S.; Asai, A.; Saito, H.; Gosni, K.; Hirata, T.
Cancer Res. 1994, 54, 2404–2410.
10. Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045–
1075.
11. Moody, C. J.; Rahimtoola, K. F. J. Chem. Soc., Perkin 1
1990, 673–679.
3a
3b
3c
3d
3e
3g
3h
5a (76)
5a (83)
5a (94)
5b (79)
5c (94)
5d (60)
5e (92)
H
H
H
MeO
H
H
H
H
H
H
H
H
H
H
H
H
MeO
H
H
H
H
H
H
H
Me
H
H
H
H
H
Bn
H
MeO MeO
H
H
H
H
NH2
H
H
H
12. Tsuji, Y.; Kotachi, S.; Huhm, K.-T.; Watanabe, Y. J. Org.
Chem. 1990, 55, 580–584.
13. Schreiber, S. L. Science 1991, 251, 283–287.
14. Kende, A. S.; Liu, K.; Kaldor, I.; Dorey, G.; Koch, K. J.
Am. Chem. Soc. 1995, 117, 8258–8270.
15. Han, W.; Hu, Z.; Jiang, X.; Decicco, C. P. Bioorg. Med.
Chem. 2000, 10, 711–713.
16. Sun, D. X.; Liu, L.; Heinz, B.; Kolykhalov, A.; Lamar, J.;
Johnson, R. B.; Wang, Q. M.; Yip, Y.; Chen, S. Bioorg.
Med. Chem. 2004, 14, 4333–4338.
17. Chen, K. X.; Njoroge, F. G.; Arasappan, A.; Venkat-
raman, S.; Vibulbhan, B.; Yang, W.; Parekh, T. N.;
Pichardo, J.; Prongay, A.; Cheng, K.; Butkiewicz, N.;
Yao, N.; Madison, V.; Girijavallabhan, V. J. Med. Chem.
2006, 49, 995–1005.
In conclusion, the regioselective ring opening of the read-
ily available compounds 1 is the key-step in the synthesis
of N-3-arylpyruvylamino esters. These compounds may
be subsequently derived to tripeptide mimetics bearing
an aminoindole-2-carboxylic acid or an aminophenyl-
a-ketopropionic acid as the intermediate residue. Fur-
ther research on the application of this protocol to the
synthesis of more complex peptide mimetics are in
progress in our laboratories.
Acknowledgements
18. Bach, R. D.; Mintcheva, I.; Kronenberg, W. J.; Schlegel,
H. B. J. Org. Chem. 1993, 58, 6135–6138.
19. Kahn, K.; Bruice, T. C. Bioorg. Med. Chem. 2000, 8,
1881–1891.
We thank CICYT (project SAF 2003-03141) and
´
Comunidad Autonoma de Madrid (Group 920234) for
financial support of this research.
20. Yang, Z.; Zhang, Z.; Meanwell, N. A.; Kadow, J. F.;
Wang, T. Org. Lett. 2002, 4, 1103–1105.
21. Nakamura, M.; Inoue, J.; Yamada, T. Bioorg. Med.
Chem. Lett. 2000, 10, 2807–2910.
Supplementary data
Supplementary data associated with this article can be
´
22. Gonzalez, J. F.; Salazar, L.; de la Cuesta, E.; Avendano,
˜
C. Tetrahedron 2005, 61, 7447–7455.
23. Li, W.; Peng, S. Tetrahedron Lett. 1998, 39, 7373–7376.
´
24. Gonzalez, J. F.; de la Cuesta, E.; Avendano, C. Synth.
˜
Commun. 2004, 34, 1589–1597.
25. Condensation procedure. Synthesis of 1a: To a solution of
N,N0-diacetyl-2,5-piperazinedione (2 g, 10 mmol) in anhy-
drous CH2Cl2 (10 mL), under Ar atmosphere, were added
o-nitrobenzaldehyde (1.66 g, 11 mmol) and 1 equiv of a
1 M solution of potassium tert-butoxide in tert-butyl
alcohol. The reaction was stirred at room temperature for
5 h. After addition of hexane (10 mL), the condensation
product precipitated. The filtrate was first washed with
water and then with hexane giving 1a (2.83 g, 98%):
mp 173–174 °C, IR (NaCl, film): 1693, 1640 and
References and notes
1. Hashimoto, Y.; Aoyagi, H.; Waki, M.; Kato, T.; Izumiya,
N. Int. J. Protein Res. 1983, 21, 11–15.
2. Oba, M.; Terauchi, T.; Owari, Y.; Imai, Y.; Motoyama, I.;
Nishiyama, K. J. Chem. Soc., Perkin Trans. 1 1998, 1275–
1281.
3. Kukula, P.; Prins, R. Diastereoselective hydrogenation in
the preparation of Fine Chemicals. In Topics in Catalysis;
Springer-Science+Business media B., 2003; Vol. 25, pp
29–42.
1524 cmꢀ1 1H (250 MHz, CDCl3): d, ppm 8.24 (d, 1H,
;
J = 8.2 Hz), 7.95 (ws, 1H), 7.73 (dd, 1H, J = 8.0 and
7.8 Hz), 7.62 (dd, 1H, J = 8.0 and 7.8 Hz), 7.46 (d, 1H,
J = 8.2 Hz), 7.44 (s, 1H), 4.48 (s, 2H), 2.69 (s, 3H); 13C
(63 MHz, CDCl3): d, ppm 172.5, 162.7, 158.9, 147.9,
134.4, 130.6, 128.1, 127.0, 126.0, 116.4, 46.1, 27.3. Anal.
Calcd for C13H11N3O5: C, 53.98; H, 3.83; N, 14.53.
Found: C, 53.63; H, 3.87; N, 14.18.
4. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev.
2003, 103, 893–930.
5. For summary of the applications of indoles, see: Gribble,
G. W. Five-membered rings with one heteroatom and
fused carbocyclic derivatives. In Comprehensive Heterocy-
clic Chemistry; 2nd ed. Bird, C. W., Katrizky, A. R., Rees,
C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford,
1995; Vol. 2, pp 207–257.
6. Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.;
MacTough, S. C.; Rooney, C. S.; Balani, S. K.; Condra,
J. H.; Emini, E. A.; Goldman, M. E.; Greenlee, W. J.;
Kauffman, L. R.; O’Brien, J. A.; Sardana, V. V.; Schleif,
26. Acid-promoted alcoholysis under thermal conditions. Syn-
thesis of 3b: To a solution of 1a (500 mg, 1.75 mmol) in
benzyl alcohol (50 mL), was added 5 N HCl (5 mL). The
reaction was refluxed for 2.5 h, the solvent was distilled in
vacuo to dryness, and the solid residue was purified by