Organic Letters
Letter
lectivity (entries 16, 17). However, terminal olefin 1s was a
difficult substrate, giving lower enantioselectivity (entry 18).
Our reaction was easy to scale up, and 2a was obtained in 92%
yield with 99% ee on a 1 mmol scale (entry 19). Finally, the
amount of the catalyst could be reduced to 5 mol % (entry 20).
Although a longer reaction time was required, comparable
results were obtained (24 h, 99%, 96% ee).
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Advanced Molecular Trans-
formations by Organocatalysts” and a grant for Platform for
Drug Discovery, Informatics, and Structural Life Science from
The Ministry of Education, Culture, Sports, Science and
Technology, Japan.
To confirm the synthetic utility of the reaction, we next
examined the conversion of 2a (Scheme 3). First, radical
REFERENCES
■
(1) For reviews, see: (a) Chen, G.; Ma, S. Angew. Chem., Int. Ed.
2010, 49, 8306. (b) Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011,
1335. (c) Castellanos, A.; Fletcher, S. P. Chem.Eur. J. 2011, 17,
5766. (d) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem.,
Int. Ed. 2012, 51, 10938. (e) Hennecke, U. Chem.Asian J. 2012, 7,
456. (f) Tan, C. K.; Yeung, Y.-Y. Chem. Commun. 2013, 49, 7985.
(g) Murai, K.; Fujioka, H. Heterocycles 2013, 87, 763. (h) Cheng, Y. A.;
Yu, W. Z.; Yeung, Y.-Y. Org. Biomol. Chem. 2014, 12, 2333.
Scheme 3. Conversion of 2a
(2) For selected examples of amine catalysts, see: (a) Haas, J.; Piguel,
S.; Wirth, T. Org. Lett. 2002, 4, 297. (b) Whitehead, D. C.; Yousefi, R.;
Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298.
(c) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.;
Borhan, B. Angew. Chem., Int. Ed. 2011, 50, 2593. (d) Nicolaou, K. C.;
Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc.
2011, 133, 8134. (e) Chen, Z.-M.; Zhang, Q.-W.; Chen, Z.-H.; Li, H.;
Tu, Y.-Q.; Zhang, F.-M.; Tian, J.-M. J. Am. Chem. Soc. 2011, 133, 8818.
(f) Li, H.; Zhang, F.-M.; Tu, Y.-Q.; Zhang, Q.-W.; Chen, Z.-M.; Chen,
Z.-H.; Li, J. Chem. Sci. 2011, 2, 1839. (g) Jaganathan, A.; Staples, R. J.;
Borhan, B. J. Am. Chem. Soc. 2013, 135, 14806. (h) Wilking, M.; Muck-
̈
Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. J. Am. Chem. Soc. 2013,
135, 8133. (i) Zhang, Y.; Xing, H.; Xie, W.; Wan, X.; Lai, Y.; Ma, D.
Adv. Synth. Catal. 2013, 355, 68. (j) Zhang, W.; Liu, N.; Schienebeck,
C. M.; Zhou, X.; Izhar, I. I.; Guzei, I. A.; Tang, W. Chem. Sci. 2013, 4,
2652. (k) Yin, Q.; You, S.-L. Org. Lett. 2014, 16, 2426. (l) Jaganathan,
A.; Borhan, B. Org. Lett. 2014, 16, 3616. (m) Li, L.; Su, C.; Liu, X.;
Tian, H.; Shi, Y. Org. Lett. 2014, 16, 3728.
(3) For selected examples of Brønsted acids, see: (a) Huang, D.;
Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi, Y. Org. Lett. 2011,
13, 6350. (b) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256.
(c) Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068.
(d) Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem. Soc. 2014, 136,
14734.
(4) For selected examples of hydrogen bonding catalysts, see:
(a) Brindle, C. S.; Yeung, C. S.; Jacobsen, E. N. Chem. Sci. 2013, 4,
2100. (b) Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.;
Shimura, M.; Fujioka, H. Angew. Chem., Int. Ed. 2010, 49, 9174.
(c) Murai, K.; Shimizu, N.; Fujioka, H. Chem. Commun. 2014, 50,
12530.
(5) For selected examples of bifunctional catalysts, see: (a) Zhang,
W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W. J. Am.
Chem. Soc. 2010, 132, 3664. (b) Veitch, G. E.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2010, 49, 7332. (c) Paull, D. H.; Fang, C.; Donald, J. R.;
Pansick, A. D.; Martin, S. F. J. Am. Chem. Soc. 2012, 134, 11128.
(d) Tripathi, C. B.; Mukherjee, S. Org. Lett. 2014, 16, 3368. (e) Guo,
B.; Fu, C.; Ma, S. Chem. Commun. 2014, 50, 4445. (f) Zhou, L.; Tan,
C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132,
15474. (g) Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem.
Soc. 2011, 133, 9164. (h) Jiang, X.; Tan, C. K.; Zhou, L.; Yeung, Y.-Y.
Angew. Chem., Int. Ed. 2012, 51, 7771.
debromination was successfully carried out to give 8 in 84%
yield. Hydrolysis under acidic conditions gave chiral tertiary
alcohol 9 without racemization. Additionally, the substitution
reaction with an acetate anion, followed by solvolysis, delivered
primary alcohol 10 in good yield. The obtained 10 was readily
converted to 11 under conventional chlorination conditions,
which enabled determination of the absolute configuration of
2a by comparing the optical rotation with the reported value.2c
In summary, we have developed a highly enantioselective
bromocyclization of allylic amides. This reaction provides chiral
brominated oxazoline compounds, which can be converted to
synthetically useful chiral building blocks. As mentioned above,
achieving high enantioselectivity with Lewis base activation has
been thought to be difficult. Therefore, we believe that our
work will be informative in the discovery of other halogenation
reactions, since various chiral phosphine compounds are known
and readily available. Further investigations of the substrate
scope and reaction mechanism will be reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Typical experimental procedure and characterization for all new
products are presented in the Supporting Information. This
material is available free of charge via the Internet at http://
(6) For Lewis acid catalysts, see: (a) Inoue, T.; Kitagawa, O.; Saito,
A.; Taguchi, T. J. Org. Chem. 1997, 62, 7384. (b) Kang, S. H.; Lee, S.
B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748. (c) Ning, Z.; Jin,
R.; Ding, J.; Gao, L. Synlett 2009, 2291. (d) Huang, D.; Liu, X.; Li, L.;
Cai, Y.; Liu, W.; Shi, Y. J. Am. Chem. Soc. 2013, 135, 8101. (e) Miles,
D. H.; Veguillas, M.; Toste, F. D. Chem. Sci. 2013, 4, 3427. (f) Arai, T.;
Sugiyama, N.; Masu, H.; Kado, S.; Yabe, S.; Yamanaka, M. Chem.
Commun. 2014, 50, 8287.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(7) For phase transfer catalysts, see: (a) Rauniyar, V.; Lackner, A. D.;
The authors declare no competing financial interest.
Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681. (b) Wang, Y.-
C
Org. Lett. XXXX, XXX, XXX−XXX