7074
C. V. Yelamaggad, A. S. Achalkumar / Tetrahedron Letters 47 (2006) 7071–7075
6. Christ, T.; Glusen, B.; Greiner, A.; Kettner, A.; Sander,
R.; Stumpflen, V.; Tsukruk, V.; Wendorff, D. J. Adv.
Mater. 1997, 9, 48–52.
7. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.;
Moons, E.; Friend, R. H.; MacKenzie, J. D. Science
2001, 293, 1119–1126.
8. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schen-
ning, A. P. H. Chem. Rev. 2005, 105, 1491–1546, and the
references cited therein.
9. (a) Gearba, R. I.; Lehmann, M.; Levin, J.; Ivanov, D. A.;
Koch, M. H. J.; Barbera’, J.; Debije, M. G.; Piris, J.;
Geerts, Y. H. Adv. Mater. 2003, 15, 1614–1618; (b)
Chang, T.-H.; Wu, B.-Ru.; Chiang, M. Y.; Liao, S.-C.;
Ong, C. W.; Hsu, H.-F.; Lin, S.-Y. Org. Lett. 2005, 7,
4705–4708.
Figure 3. The DSC traces of TSAN 2 (at a rate of 5 ꢀC/min).
10. Kestemont, G.; de Halleux, V.; Lehmann, M.; Ivanov, D.
A.; Watson, M.; Geerts, Y. H. Chem. Commun. 2001,
2074–2075.
11. Chong, J. H.; Sauer, M.; Patrick, B. O.; Maclachlan, M. J.
Org. Lett. 2003, 21, 3823–3826.
12. Yelamaggad, C. V.; Achalkumar, A. S.; Shankar Rao, D.
S.; Prasad, S. K. J. Am. Chem. Soc. 2004, 126, 6506–
6507.
13. (a) Schouten, P. G.; Warman, J. H.; de Haas, M. P.; van
Nostrum, C. F.; Gelinck, G. G.; Nolte, R. J. M.; Copyn,
M. J.; Zwikker, J. W.; Engel, M. K.; Hanack, M.; Chang,
Y. H.; Ford, W. T. J. Am. Chem. Soc. 1994, 116, 6880–
6894; (b) Kumar, S.; Shankar Rao, D. S.; Prasad, S. K. J.
Mater. Chem. 1999, 9, 2751–2754.
0.4
0.3
0.2
0.1
100
80
60
40
20
0
a
b
300
400
500
600
λ (nm)
Figure 4. (a) UV absorption and (b) emission (for the excitation at
420 nm) spectra of TSAN 2 in THF.
14. The requisite branched chain alkyl bromide, 1-bromo-3,7-
dimethyloctane was prepared by treating 3,7-dimethyloct-
anol with 48% hydrobromic acid in the presence of sulfuric
acid. The O-alkylation of catechol or pyragallol with the
alkylbromide was carried out by employing a William-
son’s ether synthesis protocol to obtain dialkoxy or
trialkoxy benzenes 6a or 6b, respectively. The nitration
of 6a or 6b using an aqueous solution of nitric acid (70%)
and catalytic amounts of sodium nitrite in dichlorometh-
ane generated the corresponding nitrobenzenes 5a or 5b,
which upon catalytic hydrogenation furnished anilines 4a
and 4b. 1,3,5-Triformylphloroglucinol 3 was prepared by
the Duff formylation of phloroglucinol as described by
Chong et al.11 Finally, the amines (4a and 4b, 0.57 mmol,
4 equiv) and 3 (0.14 mmol, 1 equiv) were taken in absolute
ethanol and heated at 80 ꢀC for 4 h.12 The solvent was
removed in vaccuo from the reaction mixture to give the
target compounds as dull yellow gummy masses. These
products were purified by repeatedly dissolving them in
dichloromethane and re-precipitating the LC mass by the
addition of a large excess of ethanol at 10–15 ꢀC. Data for
1: Rf = 0.72 (30% EtOAc–hexanes); A yellow liquid
crystalline gummy mass; yield = 60%; UV–vis (THF):
in the number of peripheral alkoxy chains does not affect
their absorption and emission characteristics noticeably,
as both show identical patterns.
In conclusion, we have reported the synthesis and char-
acterization of the first examples of TSANs (existing
exclusively in their C3h and Cs keto-enamine tautomeric
forms) exhibiting a technologically important columnar
mesophase over a large thermal range, well below and
above ambient temperature. Seemingly, the branched
alkyl tails at the peripheral region of the TSAN core,
prevent crystallization and thus the molecules stay in a
liquid crystalline state over a wide temperature range
including room temperature. In our opinion, these Col
LCs featuring proton and electron interaction through
the H-bonding environment are ideal candidates for
electronic device applications.
k
max = 416.09 nm, e = 7.4044 · 104 L molÀ1 cmÀ1
;
IR
(KBr pellet): mmax in cmÀ1 3450, 2924, 2853, 1621, 1592,
1458, 1018, and 829; 1H NMR (CDCl3, 400 MHz) d: 13.48
(d, J = 13.0 Hz, @CNH), 13.37 (d, J = 13.3 Hz, @CNH),
13.01 (d, J = 13.2 Hz, @CNH), 12.96 (d, J = 13.4 Hz,
@CNH) (these three resonances are due to 3H), 8.63–8.77
(m, 3H, @CHN), 6.82–6.9 (m, 9H, Ar), 4.03–4.11 (m, 12H,
6 · OCH2), 0.86–1.88 (m, 114H, 12 · CH, 24 · CH2,
18 · CH3); MS (FAB+): m/z for C87H142N3O9 (M+1),
Calculated for C87H142N3O9: 1373.1, Found: 1373.3;
References and notes
1. (a) Chandrasekhar, S. Liquid Crystals, 2nd ed.; Cambridge
University Press, 1994; (b) Kato, T. Science 2002, 295,
2414–2418; (c) Tschierske, C. Annu. Rep. Prog. Chem.
Sect. C 2001, 97, 191–267.
2. Chandasekhar, S.; Sadashiva, B. K.; Suresh, K. A.
Pramana 1977, 9, 471–480.
3. Chandrasekhar, S.; Balagurusamy, V. S. K. Proc. R. Soc.
London, Sec. A. 2002, 458, 1783–1794.
4. Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.;
Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer,
D. Nature 1994, 371, 141–143.
Elemental analysis: calculated (found) (%):
C 76.1
(75.75), H 10.35 (9.95), N 3.06 (2.96). 2: Rf = 0.73 (30%
EtOAc–hexanes); A yellow liquid crystalline gummy mass;
yield: 72%; UV–vis (THF):
kmax = 416.10 nm, e =
5.605 · 104 L molÀ1 cmÀ1; IR (KBr pellet): mmax in cmÀ1
3448, 2923, 2852, 1627, 1591, 1459, 1308, 1120, 824; 1H
NMR (CDCl3, 400 MHz) d: 13.48 (d, J = 13.0 Hz,
5. Osburn, E. J.; Schmidt, A.; Chau, L. K.; Chen, S. Y.;
Smolenyak, P.; Armstrong, N. R.; O’Brian, D. F. Adv.
Mater. 1996, 8, 926–928.