4878
Organometallics 2006, 25, 4878-4882
Stabilization of Nickel(0) by Hemilabile P,N-Ferrocene Ligands and
Their Ethylene Oligomerization Activities
Zhiqiang Weng,†,‡ Shihui Teo,† and T. S. Andy Hor*,†
Department of Chemistry, National UniVersity of Singapore, 3 Science DriVe 3, Kent Ridge, Singapore
117543, and Institute of Chemical and Engineering Sciences, No. 1, Pesek Road,
Jurong Island, Singapore 627833
ReceiVed July 5, 2006
Ligand displacement reactions of Ni(COD)2 with a ferrocenediyl iminophosphine, viz., [C5H4CHd
N(C6F5)]Fe[η-C5H4PPh2] (1) or [C5H4CHdNC(H)(CH3)(C6H5)]Fe[η-C5H4PCy2] (2), in the presence of
t-BuNC, CO, or PhCtCPh give the appropriate mixed-ligand Ni(0) complexes, viz., [C5H4CHd
N(C6F5)]Fe[η-C5H4PPh2]Ni0(CNt-Bu)3 (3), [C5H4CHdN(C6F5)]Fe[η-C5H4PPh2]Ni0(CO)2 (4a), {[C5H4-
CHdN(C6F5)]Fe[η-C5H4PPh2]}2Ni0(CO)2 (4b), and [C5H4CHdNC(H)(CH3)(C6H5)]Fe[η-C5H4PCy2]Ni0(η2-
PhCtCPh) (5). The X-ray crystal and molecular structures of 4b and 5 are described. The hemilability
of iminophosphine is illustrated by the formation of both P,N-chelating and imine-pendant functions. All
the complexes examined are catalytically active toward ethylene oligomerization at 30 °C, with 5 showing
the best activity, followed by 3 and 4.
Our interest in the coordination12 and catalytic13 chemistry
of dppf [1,1′-bis(diphenylphosphino)ferrocene] stems from its
coordinative variance.14 Such ligand adaptability tends to
complement and support the metal geometric and coordinative
changes along the catalytic path. To maximize this advantage,
we need to design hemilabile ligands with suitable heterodi-
functional donors that could match the need of the metal and
Introduction
Ethylene oligomerization developed at Shell, BP Amoco, and
Chevron Phillips has provided the industry with highly desirable
linear R-olefins in the C6-C20 range. These oligomers are
important precursors for detergents, plasticizer alcohols, syn-
thetic lubricants, and fine chemicals and as comonomers in the
production of linear low-density polyethylene.1,2 They also
provided good incentives for catalytic research in nickel
coordination complexes, especially those of Ni(II). For example,
the SHOP-type [P,O] system developed by Keim3 and Ostoja4
affords highly linear R-olefins (C6-C20). Brookhart used Ni-
(II) diimine [N,N] complexes with a large excess of methyl-
aluminoxane (MAO) to produce highly active R-olefin catalysts
for ethylene oligomerization with high selectivity.5 [N,O]
chelating neutral nickel catalysts have been reported by DuPont,6
Grubbs,7 Brookhart,8 etc.,9 whereas [P,N] chelating nickel
ethylene oligomerization catalysts have been studied by Braun-
stein10 and others.11
(5) (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100,
1169. (b) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414. (c) Killian, C. M.; Tempel, D. J.; Johnson, L. K.;
Brookhart, M. J. Am. Chem. Soc. 1996, 118, 11664. (d) Killian, C. M.;
Johnson, L. K.; Brookhart, M. Organometallics 1997, 16, 2005.
(6) Johnson, L. K.; Bennett, A. M. A.; Ittel, S. D.; Wang, L.; Parthasa-
rathy, A.; Hauptman, E.; Simpson, R. D.; Feldman, J.; Coughlin, E. B.
WO 98/30609, 1998.
(7) (a) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R.
H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17, 3149. (b)
Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs,
R. H.; Bansleben, D. A. Science 2000, 287, 460.
(8) (a) Zhang, L.; Brookhart, M.; White, P. S. Organometallics 2006,
25, 1868. (b) Jenkins, J. C.; Brookhart, M. Organometallics 2003, 22, 250.
(c) Hicks, F. A.; Jenkins, J. C.; Brookhart, M. Organometallics 2003, 22,
3533. (d) Hicks, F. A.; Brookhart, M. Organometallics 2001, 20, 3217. (e)
Rachita, M. J.; Huff, R. L.; Bennett, J. L.; Brookhart, M. J. Polym. Sci.,
Part A: Polym. Chem. 2000, 38, 4627-4640.
(9) (a) Dohler, T.; Gorls, H.; Walther, D. Chem. Commun. 2000, 945-
946. (b) Walther, D.; Dohler, T.; Theyssen, N.; Gorls, H. Eur. J. Inorg.
Chem. 2001, 2049-2060.
(10) Speiser, F.; Braunstein, P.; Saussine, L. Acc. Chem. Res. 2005, 38,
784. (b) Speiser, F.; Braunstein, P.; Saussine, L. Organometallics 2004,
23, 2625. (c) Speiser, F.; Braunstein, P.; Saussine, L.; Welter, R. Organo-
metallics 2004, 23, 2613. (d) Speiser, F.; Braunstein, P.; Saussine, L.; Welter,
R. Inorg. Chem. 2004, 43, 1649.
(11) (a) Bonnet, M. C.; Dahan, F.; Ecke, A.; Keim, W.; Schulz, R. P.;
Tkatchenko, I. J. Chem. Soc., Chem. Commun. 1994, 615. (b) Ecke,
A.; Keim, W.; Bonnet, M. C.; Tkatchenko, I.; Dahan, F. Organometallics
1995, 14, 5302.
(12) See for example: (a) Fong, S.-W. A.; Vittal, J. J.; Hor T. S. A.
Organometallics 2000, 19, 918. (b) Neo, Y. C.; Vittal, J. J.; Hor. T. S. A.
Dalton Trans. 2002, 337. (c) Xu, X.-L.; Fong, S. W. A.; Li, Z.-H.; Loh,
Z.-H. Zhao, F.; Vittal, J. J.; Henderson, W.; Khoo, S. B.; Hor, T. S. A.
Inorg. Chem. 2002, 41, 6838.
(13) (a) Brown, J. M.; Cooley, N. A. J. Chem. Soc., Chem. Commun.
1988, 1345. (b) Ohe, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58,
2201. (c) Hughes, O. R.; Unruh, J. D. J. Mol. Catal. 1981, 12, 71.
(14) Gan, K.-S.; Hor, T. S. A. Ferrocenes-Homogeneous Catalysis,
Organic Synthesis, Materials Science; Togni, A., Hayashi, T., Eds.; VCH:
Weinheim, 1995; Chapter 1, p 3.
* To whom correspondence should be addressed. E-mail: andyhor@
nus.edu.sg.
† National University of Singapore.
‡ Institute of Chemical and Engineering Sciences.
(1) (a) Chauvin, Y.; Olivier, H. In Applied Homogeneous Catalysis with
Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH:
Weinheim, Germany, 1996; Vol. 1, pp 258-268. (b) Vogt, D. In Applied
Homogeneous Catalysis with Organometallic Compounds; Cornils, B.,
Herrmann, W. A., Eds.; VCH: Weinheim, Germany, 1996; Vol. 1, pp 245-
256. (c) Parshall, G. W.; Ittel, S. D. In Homogeneous Catalysis: The
Applications and Chemistry of Catalysis by Soluble Transition Metal
Complexes; Wiley: New York, 1992; pp 68-72.
(2) Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Orgamomet.
Chem. 2004, 689, 3641.
(3) (a) Keim, W.; Kowaldt, F. H.; Goddard, R.; Kru¨ger, C. Angew. Chem.,
Int. Ed. Engl. 1978, 17, 466. (b) Keim, W.; Hoffmann, B.; Lodewick, R.;
Peuckert, M.; Schmitt, G. J. Mol. Catal. 1979, 6, 79. (c) Keim, W. Angew.
Chem., Int. Ed. Engl. 1990, 29, 235. (d) Hirose, K.; Keim, W. J. Mol. Catal.
1992, 73, 271. (e) Heinicke, J.; Koesling, M.; Bru¨ll, R.; Keim, W.; Pritzkow,
H. Eur. J. Inorg. Chem. 2000, 299. (f) Heinicke, J.; He, M.; Dal, A.; Kein,
H. F.; Hetche, O.; Keim, W.; Flo¨rke, U.; Haupt, H. J. Eur. J. Inorg. Chem.
2000, 431.
(4) (a) Ostoja Starzewski, K. A.; Born, L. Organometallics 1992, 11,
2701. (b) Ostoja Starzewski, K. A.; Witte, J.; Reichert, K. H.; Vasiliou, G.
In Transition Metals and Organometallics as Catalysts for Olefin Polym-
erization; Kaminsky, W., Sinn, H., Eds.; Springer: Berlin, 1987; p 349.
10.1021/om060607+ CCC: $33.50 © 2006 American Chemical Society
Publication on Web 08/30/2006