Communications
[15] R. M. Fesinmeyer, F. M. Hudson, N. H. Andersen, J. Am. Chem.
Soc. 2004, 126, 7238 – 7243.
assisted by folding of precursor oligomers, the macrocycle
sizes are limited to a determined length because of the rigidity
of their backbones.[16] The nature of the folded structure
adopted by the squaramides permits no size restrictions on
the macrocycle synthesis. Therefore, a versatile synthetic
strategy to obtain tailor-made macrocycle cavities with
squaramide groups, which maintain their considerable hydro-
gen-bonding capability, has been demonstrated.
[16] L. Yuan, W. Feng, K. Yamato, A. R. Sanford, D. Xu, H. Guo, B.
Gong, J. Am. Chem. Soc. 2004, 126, 11120 – 11121.
[17] The macrocyclation reaction fails when the donor atom in the
d position on the alkyl chain is absent;[10] moreover, unpublished
results show that a different atom sequence in the linker chain
gives insoluble squaramide compounds in CHCl3 and protic
solvents.
In summary, we have demonstrated that oligosquaramides
of different length that contain a donor atom (N) in the
d position of the alkyl linker chains, fold to form stable
monomeric structures that possess a hairpin-like pattern driven
by intramolecular hydrogen-bonding interactions.[17] The sta-
bility of the folded structure increases with oligomer length,
but the shortest oligomers also display a well-defined and
stable conformation. The characterized folded structures are
stable in polar solvents, as indicated by denaturation studies
and DSC experiments. Thus, the preorganization shown by the
oligosquaramide skeleton make them useful precursors in
macrocyclization reactions. The study presented herein is the
first example of how unnatural oligomers with designed folded
structures driven by hydrogen-bonding interactions can be
used to efficiently yield large macrocyclic structures.
Received: July 13, 2006
Published online: September 26, 2006
Keywords: foldamers · hydrogen bonds · macrocyclization ·
.
squaramides
[1] D. J. Craik, Science 2006, 311, 1563 – 1564.
[2] R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J. Rosengren,
S. T. Nevin, F. A. Meunier, D. J. Adams, D. J. Craik, Proc. Natl.
Acad. Sci. USA 2005, 102, 13767 – 13772.
[3] J. Blankenstein, J. Zhu, Eur. J. Org. Chem. 2005, 1949 – 1964.
[4] a) J. C. Wu, N. Tang, W. S. Liu, M. Y. Tan, A. S. C. Chan, Chin.
Chem. Lett. 2001, 12, 757 – 760; b) M. Bru, I. Alfonso, M. I.
Burguete, S. V. Luis, Tetrahedron Lett. 2005, 46, 7781 – 7785.
[5] a) R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001,
101, 3219 – 3232; b) J. D. Hill, M. J. Mio, R. B. Prince, T. S.
Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893 – 4011.
[6] L. Yuan, A. R. Sanford, W. Feng, A. Zhang, J. Zhu, H. Zeng, K.
Yamato. M. Li, J. S. Ferguson, B. Gong, J. Org. Chem. 2005, 70,
10660 – 10669.
[7] a) P. S. Corbin, S. C. Zimmerman, J. Am. Chem. Soc. 2000, 122,
3779 – 3780; b) P. S. Corbin, S. C. Zimmerman, P. A. Thiessen,
N. A. Hawryluk, T. J. Murray, J. Am. Chem. Soc. 2001, 123,
10475 – 10488.
[8] J. Garric, J.-M. LØger, A. Grelard, M. Ohkita, I. Huc, Tetrahe-
dron Lett. 2003, 44, 1421 – 1424.
[9] H. S. Gellman, Acc. Chem. Res. 1998, 31, 173 – 180.
[10] M. C. Rotger, M. N. Piæa, A. Frontera, G. Martorell, P. Ballester,
P. M. Deyà, A. Costa, J. Org. Chem. 2004, 69, 2302 – 2308.
[11] Experimental details regarding the synthesis and characteriza-
tion of the squaramide compounds are available in the
Supporting Information.
[12] N. H. Andersen, J. W. Neidigh, S. M. Harris, G. M. Lee, Z. Liu, T.
Tong, J. Am. Chem. Soc. 1997, 119, 8547 – 8561.
[13] E. R. Gillies, C. Dolain, J.-M. Lger, I. Huc, J. Org. Chem. 2006,
in press.
[14] K. Kirshenbaum, A. E. Barrow, R. A. Goldsmith, P. Armand,
E. K. Bradley, K. T. V. Truong, K. A. Dill, F. E. Cohen, R. N.
Zuckermann, Proc. Natl. Acad. Sci. USA 1998, 95, 4303 – 4308.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 6844 –6848