(1 mg, 2 lmol, 0.01 equiv.) was added. The resultant emerald
green solution was stirred at r.t. for 100 min. The reaction mixture
was filtered through a pad of celite eluting with hexanes (10 mL).
The filtrate was concentrated in vacuo. The residue was purified
by column chromatography [SiO2, Et2O–hexanes (1 : 5)] to give
the title compound 2 (64 mg, 0.10 mmol, 60%) as a colourless
14 H. von der Emde, A. Langels, M. Noltemeyer and R. Bru¨ckner,
Tetrahedron Lett., 1994, 35, 7609.
15 A. M. Montana, F. Garcia and P. M. Grima, Tetrahedron, 1999, 55,
5483.
16 C. Spino and M. Allan, Can. J. Chem., 2004, 82, 177.
17 T. Novak, Z. Tan, B. Liang and E. Negishi, J. Am. Chem. Soc., 2005,
127, 2838.
18 J. Cooksey, P. J. Kocienski and Y.-f. Li, Collect. Czech. Chem. Commun.,
2005, 70, 1653.
19 J. W. Faller and D. Linebarrier, Organometallics, 1988, 7, 1670.
20 D. Enders, U. Frank, P. Fey, B. Jandeleit and B. B. Lohray,
J. Organomet. Chem., 1996, 519, 147.
21 J. W. Faller and C. Lambert, Tetrahedron, 1985, 41, 5755.
22 D. Enders, B. Jandeleit, S. von Berg, G. Raabe and J. Runsink,
Organometallics, 2001, 20, 4312.
23 By contrast, ArCu reagents add to complexes 7 and 8 in 68–72% yield:
R. Chow, P. J. Kocienski, A. Kuhl, J.-Y. LeBrazidec, K. Muir and P.
Fish, J. Chem. Soc., Perkin Trans. 1, 2001, 2344.
24 S. Nakanishi, H. Yamaguchi, K. Okamoto and T. Takata, Tetrahedron:
Asymmetry, 1996, 7, 2219.
1
oil: [a]2D5 −9.4 (c = 0.17, CHCl3). H NMR (500 MHz, CDCl3):
15.74 (1H, s, OH), 7.67 (4H, d, J 7.7), 7.45–7.36 (6H, m), 5.46
(1H, s, C10H), 3.76–3.60 (2H, m, C16H2), 3.67 (3H, s, CO2Me),
2.45–2.38 (2H, m, C8H/C12H), 2.35–2.25 (2H, m, C2H2), 1.69–
1.41 (9H, m, C3H2/C4H/C6H/C7H2/C13H2/C15HAHB), 1.36–
1.28 (1H, m, C15HAHB), 1.20–1.09 (2H, m, C5H2), 1.13–1.11
(6H, overlapping 2 × d, J 6.8 each, C8CH3/C12CH3), 1.05
(9H, s, (SiC(CH3)3), 0.92–0.81 (1H, m, C14H), 0.86–0.81 (9H,
overlapping 3 × d, J 6.3, 6.4 and 6.5, C4CH3/C6CH3/C14CH3).
13C NMR (300 MHz, CDCl3): 199.1, 198.6 (C9/C11), 174.6 (C1),
135.7 (4CH), 134.22 (2C), 129.7 (2CH), 127.8 (4CH), 97.2 (C10H),
62.0 (C16H2), 51.7 (CO2CH3), 44.4 (C5H2), 42.5 (C15H2), 41.8
(C13H2), 40.3, 40.1 (C8H/C12H), 39.7 (C7H2), 32.9 (C2H2), 32.0
(C3H2), 29.8, 28.0, 27.5 (C4H/C6H/C14H), 27.0 (SiC(CH3)3),
19.9, 19.6, 19.1 (C4CH3/C6CH3/C14CH3), 19.3 (SiC(CH3)3),
18.5 (2C, C8CH3/C12CH3). IR (neat): m = 2929 s, 1741 s, 1603
br s, 1111 s, 702 s cm−1. LRMS (ES mode): m/z = 645.5 [(MNa)+,
55%], 546.4 (70), 545.4 (80), 468.4 (60), 467.4 (100). HRMS (ES
mode): m/z calcd for C38H58O5NaSi: 645.3951; found: 645.3964
(MNa). Anal. calcd for C38H58O5Si: C, 73.27; H, 9.38. Found: C,
73.25; H, 9.5.
25 H. Yamaguchi, S. Nakanishi, K. Okamoto and T. Takata, SYNLETT,
1997, 722.
26 H. Yamaguchi, S. Nakanishi and T. Takata, J. Organomet. Chem., 1998,
554, 167.
27 P. F. Wiley, K. Gerzon, E. H. Flynn, M. V. Sigal, Jr., O. Weaver, U. C.
Quarck, R. R. Chauvette and R. Monahan, J. Am. Chem. Soc., 1957,
79, 6062.
28 N. L. Allinger, J. Am. Chem. Soc., 1959, 81, 232.
29 W. F. Bailey and E. R. Punzalan, J. Org. Chem., 1990, 55, 5404.
30 E. Negishi, D. R. Swanson and C. J. Rousset, J. Org. Chem., 1990, 55,
5406.
31 There is no evidence to exclude a competing SN1 mechanism but it
has been ignored here because the carbonyl group should destabilise a
positive charge.
32 T. Tashiro, K. Akasaka, H. Ohrui, E. Fattorusso and K. Mori,
Eur. J. Org. Chem., 2002, 3659.
33 D. L. Flynn, R. E. Zelle and P. A. Grieco, J. Org. Chem, 1983, 48, 2424.
34 J. A. Robinson and U. C. Dyer, J. Chem. Soc., Perkin Trans. 1, 1988,
53.
Acknowledgements
We thank the EPSRC for financial support; the Deutsche
Forschungsgemeinschaft for a fellowship (SS) and the Society for
Chemical Industry for a Gray Scholarship (TNS). We also thank
Professor Ei-ichi Negishi for valuable advice. Expert analytical
services were provided by Simon Barrett (NMR), Tanya Marinko-
Covell (MS), Colin Kilner (X-ray) and James Titchmarsh (HPLC).
35 R. W. Hoffmann, H. J. Zeiss, W. Ladner and S. Tabche, Chem. Ber.,
1982, 115, 2357.
36 A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky and
J. L. Gleason, J. Am. Chem. Soc., 1997, 119, 6496.
37 A. G. Myers and B. H. Yang, Org. Synth., 2000, 77, 22.
38 A. G. Myers, B. H. Yang and H. Chen, Org. Synth., 2000, 77, 29.
39 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org.
Chem., 1981, 46, 3936.
40 D. Y. Kondakov and E. Negishi, J. Am. Chem. Soc., 1995, 117, 10771.
41 E. Negishi and Z. Tan, Top. Organomet. Chem., 2005, 8, 139.
42 X. Zeng, F. Zeng and E. Negishi, Org. Lett., 2004, 6, 3245.
43 Z. Tan and E. Negishi, Angew. Chem., Int. Ed., 2004, 43, 2911.
44 E. Negishi, Z. Tan, B. Liang and T. Novak, Proc. Natl. Acad. Sci.
U. S. A., 2004, 101, 5782.
References
1 W. C. Liu, D. Smith-Slusarchyk, G. Astle, W. H. Trejo, W. E. Brown
and E. J. Meyers, J. Antibiot., 1978, 31, 815.
2 B. K. Toeplitz, A. I. Cohen, P. T. Funke, W. L. Parker and J. Z.
Gougatas, J. Am. Chem. Soc., 1979, 101, 3344.
3 D. A. Evans, R. L. Dow, T. L. Shih, J. M. Takacs and R. Zahler, J. Am.
Chem. Soc., 1990, 112, 5290.
4 S. Hanessian, N. G. Cooke, B. DeHoff and Y. Sakito, J. Am. Chem.
Soc., 1990, 112, 5276.
5 M. Lautens, J. T. Colucci, S. Hiebert, N. D. Smith and G. Bouchain,
Org. Lett., 2002, 4, 1879.
6 P. G. M. Wuts, R. D’Costa and W. Butler, J. Org. Chem., 1984, 49,
2582.
7 S. L. Schreiber and Z. Wang, J. Am. Chem. Soc., 1985, 107, 5303.
8 C. Spino and L. Weiler, Tetrahedron Lett., 1987, 28, 731.
9 K. P. Shelly and L. Weiler, Can. J. Chem., 1988, 66, 1359.
10 D. A. Nicoll-Griffith and L. Weiler, Tetrahedron, 1991, 47, 2733.
11 M. J. Taschner and Q. Z. Chen, Bioorg. Med. Chem. Lett., 1991, 1, 535.
12 Y. Guindon, C. Yoakim, V. Gorys, W. W. Ogilvie, D. Delorme, J.
Renaud, G. Robinson, J. F. Lavalle´e, A. Slassi, G. Jung, J. Rancourt,
K. Durkin and D. Liotta, J. Org. Chem., 1994, 59, 1166.
13 T. Q. Hu and L. Weiler, Can. J. Chem., 1994, 72, 1500.
45 M. Magnin-Lachaux, Z. Tan, B. Liang and E. Negishi, Org. Lett., 2004,
6, 1425.
46 S. Q. Huo, J. C. Shi and E. Negishi, Angew. Chem., Int. Ed., 2002, 41,
2141.
47 S. Q. Huo and E. Negishi, Org. Lett., 2001, 3, 3253.
48 S. Ribe, R. K. Kondru, D. N. Beratan and P. Wipf, J. Am. Chem. Soc.,
2000, 122, 4608.
49 G. Erker, M. Aulbach, M. Knickmeier, D. Wingbermuhle, C. Kruger,
M. Nolte and S. Werner, J. Am. Chem. Soc., 1993, 115, 4590.
50 R. Pellicciari, R. Fringuelli, E. Sisani and M. Curini, J. Chem. Soc.,
Perkin Trans. 1, 1981, 2566.
¨
¨
51 J. A. Marshall and S. Xie, J. Org. Chem, 1995, 60, 7230.
52 K. Itoh, S. Nakanishi and Y. Otsuji, J. Organomet. Chem., 1994, 473,
215.
53 L. A. Paquette, A. M. Doherty and C. M. Rayner, J. Am. Chem. Soc.,
1992, 114, 3910.
54 P. Wipf and S. Ribe, Org. Lett., 2000, 2, 1713.
55 S. Hanessian and P. J. Murray, Can. J. Chem., 1986, 64, 2231.
3336 | Org. Biomol. Chem., 2006, 4, 3325–3336
This journal is
The Royal Society of Chemistry 2006
©