G. Castronuovo, M. Niccoli / Thermochimica Acta 557 (2013) 44–49
49
[12] G. Castronuovo, M. Niccoli, L. Varriale, Complexation forces in aqueous
solution. Calorimetric studies of the association of 2-hydroxypropyl--
cyclodextrin with monocarboxylic acids or cycloalkanols, Tetrahedron 63
(2007) 7047–7052.
[13] G. Castronuovo, M. Niccoli, Thermodynamics of inclusion complexes of natu-
ral and modified cyclodextrins with propranolol in aqueous solution at 298 K,
Bioorg. Med. Chem. 14 (2006) 3883–3887.
[29] G. Castronuovo, M. Niccoli, Solvent effects on the complexation of 1-alkanols
by parent and modified cyclodextrins. calorimetric studies at 298 K, J. Therm.
Anal. Calorim. 103 (2011) 641–646.
[30] Y. Inoue, Y. Miyata, Formation, Molecular dynamics of cycloamylose inclusion
complexes with phenylalanine, Bull. Chem. Soc. Jpn. 54 (1981) 809–816.
[31] M. Cervero, F. Mendicuti, Inclusion complexes of dimethyl
2
6-
Naphthalenedicarboxylate with ␣- and -cyclodextrins in aqueous medium:
[14] L. Liu, Q.-X.J. Guo, The driving forces in the inclusion complexation of cyclodex-
trins, J. Inclusion Phenom. Macrocycl. Chem. 42 (2002) 1–14.
[15] M.V. Rekharsky, M.P. Mayhew, R.N. Goldberg, P.D. Ross, Y. Yamashoji, Y. Inoue,
Thermodynamic and nuclear magnetic resonance study of the reactions of ␣-
and -cyclodextrin with acids, aliphatic amines, and cyclic alcohols, J. Phys.
Chem. 101 (1997) 87–100.
[16] M.F. Brewster, T. Loftsson, Cyclodextrins as pharmaceutical solubilizers, Adv.
Drug Deliv. Rev. 59 (2007) 645–666.
[17] P.D. Ross, M.V. Rekharsky, Thermodynamics of hydrogen bond and
hydrophobic interactions in cyclodextrins complexes, Biophys. J. 71 (1996)
2144–2154.
[18] G. Barone, G. Castronuovo, P. Del Vecchio, V. Elia, M. Muscetta, Thermodynamics
of formation of inclusion compounds in water. ˛-Cyclodextrin–alcohol adducts
at 298.15 K, J. Chem. Soc. Faraday Trans. I 82 (1986) 2089–2101.
[19] D. Hallén, A. Schön, I. Shehatta, I. Wadsö, Microcalorimetric titration of ␣-
cyclodextrin with some straight-chain alkan-1-ols at 288.15, 298.15, and
308.15 K, J. Chem. Soc. Faraday Trans. 88 (1992) 1859–2853.
[20] N.A. Todorova, F.P. Schwarz, The role of water in the thermodynam-
ics of drug binding to cyclodextrin, J. Chem. Thermodyn. 39 (2007)
1038–1048.
[21] M. di Cagno, P.C. Stein, N. Skalko-Basnet, M. Brandl, A. Bauer-Brandl, Solubi-
lization of ibuprofen with -cyclodextrin derivatives: energetic and structural
studies, J. Pharm. Biomed. Anal. 55 (2011) 446–451.
[22] L.J. Waters, S. Bedford, G.M.B. Parkes, J.C. Mitchell, Influence of lipophilicity on
drug–cyclodextrin interactions: a calorimetric study, Thermochim. Acta 511
(2010) 102–106.
thermodynamics and molecular mechanics studies, J. Phys. Chem.
(2000) 1572–1580.
B
104
[32] T. Loftsson, E.M. Brewster, Pharmaceutical applications of cyclodextrins. 1. Drug
solubilization and stabilization, J. Pharm. Sci. 85 (1996) 1017–1025.
[33] T. Fukahori, M. Kondo, S. Nishikawa, Dynamic Study of interaction between -
cyclodextrin and aspirin by the ultrasonic relaxation method, J. Phys. Chem. B
110 (2006) 4487–4491.
[34] L.A. Belyakova, A.M. Varvarin, D. Yu Lyashenko, O.V. Khora, E.I. Oranskaya,
Complexation in a -cyclodextrin-salicylic acid system, Colloid J. 69 (2007)
546–551.
[35] L.A. Belyakova, D.Yu. Lyashenko, Complex formation between benzene car-
boxylic acids and -cyclodextrin, J. Appl. Spectrosc. 75 (2008) 314–318.
[36] S. Xing, Q. Zhang, C. Zhang, Q. Zhao, H. Ai, D. Sun, Isothermal titration calorime-
try and theoretical studies on host–guest interaction of ibuprofen with ␣-, -
and ␥-cyclodextrin, J. Solution Chem. 38 (2009) 531–543.
[37] I. Oh., M.Y. Lee, Y.B. Lee, S.C. Shin, I. Park, Spectroscopic characterization of
ibuprofen/2-hydroxypropyl--cyclodextrin inclusion complex, Int. J. Pharm.
175 (1998) 215–223.
[38] B. Rossi, P. Verrocchio, G. Villani, I. Mancini, G. Guella, E. Rigo, G. Scarduelli,
G. Mariotto, Vibrational properties of ibuprofen–cyclodextrin inclusion com-
plexes investigated by Raman scattering and numerical simulation, J. Raman
Spectrosc. 40 (2009) 453–458.
[39] V. Crupi, D. Majolino, V. Venuti, G. Guella, I. Mancini, B. Rossi, P. Verrocchio,
G. Villani, R. Stancanelli, Temperature effect on the vibrational dynamics of
cyclodextrin inclusion complexes: investigation by FTIR-ATR spectroscopy and
numerical simulation, J. Phys. Chem. A 114 (2010) 6811–6817.
[40] J.L. Manzoori, M. Amjadi, Spectrofluorimetric study of host–guest complexation
of ibuprofen with -cyclodextrin and its analytical application, Spectrochim.
Acta A 59 (2003) 909–916.
[23] W.G. Mc Millan, J.E. Mayer, The statistical thermodynamics of multicomponent
systems, J. Chem. Phys. 13 (1945) 276–306.
[24] J.J. Kozak, W.S. Knight, W. Kauzmann, Solute-solute interactions in aqueous
solutions, J. Chem. Phys. 48 (1968) 675–691.
[25] H.L. Friedman, C.V. Krishnan, Studies of hydrophobic bonding in aqueous alco-
hols: enthalpy measurements and model calculations, J. Solution Chem. 2
(1973) 119–140.
[41] V. Crupi, G. Guella, D. Majolino, I. Mancini, B. Rossi, R. Stancanelli, V. Venuti, P.
Verrocchio, G. Villani, T-dependence of the vibrational dynamics of IBP/diME-
-CD in solid state: a FT-IR spectral and quantum chemical study, J. Mol. Struct.
972 (2010) 75–80.
[26] M. Eftink, R. Biltonen, in: E. Beezer (Ed.), Biological Microcalorimetry, Academic
Press, London, 1980.
[27] G. Castronuovo, V. Elia, M. Niccoli, F. Velleca, G. Viscardi, Role of the functional
group in the formation of the complexes between ␣-cyclodextrin and alka-
nols or monocarboxylic acids in aqueous solutions. A calorimetric study at 25,
Carbohydr. Res. 306 (1998) 147–155.
[42] R. Lumry, S. Rajender, Enthalpy–entropy compensation phenomena in water
solutions of proteins and small molecules: a ubiquitous properly of water,
Biopolymers 9 (1970) 1125–1127.
[43] E. Grunwald, C. Steel, Solvent reorganization and thermodynamic
enthalpy–entropy compensation, J. Am. Chem. Soc. 117 (1995)
5687–5692.
[28] S. Andini, G. Castronuovo, V. Elia, E. Gallotta, Inclusion compounds in water:
calorimetric and spectroscopic studies of the interaction of cyclomalto-
hexaose (␣-cyclodextrin) with alkanols at 25◦, Carbohydr. Res. 217 (1991)
87–97.
[44] P. Lo Meo, F. D’Anna, M. Gruttadauria, S. Riela, R. Noto, Thermodynamics of
binding between ␣- and -cyclodextrins and some p-nitro-aniline deriva-
tives: reconsidering the enthalpy–entropy compensation effect, Tetrahedron
60 (2004) 9099–9111.