5262 Organometallics, Vol. 25, No. 22, 2006
Akita et al.
Scheme 2
Typical structural motifs for the core part of the two-
dimensional (2D) systems involve olefin and benzene frame-
works. Although their permetalated derivatives (M2CdCM2 and
C6M6) would be suitable for the study of intermetallic com-
munication, very few examples of such derivatives have been
reported so far. Previously we reported permetalated ethene
derivatives (B0; Scheme 1)8c,d,9 but the metal centers are
connected by additional metal-metal bonds, through which the
metal centers can also communicate. The lack of permetalated
derivatives without metal-metal bonds can be attributed to the
bulky metal fragment, which prevents multiple metalation of
the central carbon core. This disadvantageous point could be
overcome through insertion of a π-conjugated linker (e.g.,
acetylene unit) as shown in Scheme 1 to separate the metal
centers, as typically exemplified for the ethene derivatives (Bn
(n > 0)). The organic systems of the core parts of Bn (e.g. n )
1: tetraethynylethene (TEE)) and the benzene counterparts have
(4) (a) Paul, F.; Lapinte, C. Coord. Chem. ReV. 1998, 178, 431. (b) Le
Narvor, N.; Toupet, L.; Lapinte, C. Chem. Commun. 1993, 357. (c) Le
Narvor, N.; Toupet, L.; Lapinte, C. J. Am. Chem. Soc. 1995, 117, 7129. (d)
Le Narvor, N.; Lapinte, C. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1, 745.
(e) Guillemot, M. Toupet, L.; Lapinte, C. Organometallics 1998, 17, 1928.
(f) Coat, F.; Guillevic, M. A.; Toupet, L.; Paul, F.; Lapinte, C. Organo-
metallics 1997, 16, 5988. (g) Paul, F.; Meyer, W. E.; Toupet, L.; Jiao, H.
J.; Gladysz, J. A.; Lapinte, C. J. Am. Chem. Soc. 2000, 122, 9405. (h) Jiao,
H. J.; Costuas, K.; Gladysz, J. A. Halet, J.-F.; Guillemot, M.; Paul, F.;
Lapinte, C. J. Am. Chem. Soc. 2003, 125, 9511. (i) Bruce, M. I.; Ellis, B.
G.; Gaudio, M.; Lapinte, C.; Melino, G.; Paul, F.; Skelton, B. W.; Smith,
M. E.; Toupet, L.; White, A. H. Dalton Trans. 2004, 1601. (j) Bruce, M.
I.; Costuas, K.; Davin, T.; Ellis, B. G.; Halet, J.-F.; Lapinte, C.; Low, P. J.;
Smith, M. E.; Skelton, B. W.; Toupet, L.; White, A. H. Organometallics
2005, 24, 3864. (k) Coat, F.; Lapinte, C. Organometallics 1996, 15, 477.
(l) Coat, F.; Paul, F.; Lapinte, C.; Toupet, L.; Costuas, K.; Halet, J.-F. J.
Organomet. Chem. 2003, 683, 368. (m) Le Narvor, N.; Lapinte, C.
Organometallics 1995, 14, 634. (n) Weyland, T.; Lapinte, C.; Frapper, G.;
Calhorda, M. J.; Halet, J. F.; Toupet, L. Organometallics 1997, 16, 2024.
(o) Weyland, T.; Costuas, K.; Mari, A.; Halet, J. F.; Lapinte, C. Organo-
metallics 1998, 17, 5569. (p) Weyland, T.; Costuas, K.; Toupet, L.; Halet,
J. F.; Lapinte, C. Organometallics 2000, 19, 4228. (q) de Montigny, F.;
Argouarch, G. Costuas, K.; Halet, J. F.; Roisnel, T.; Toupet, L.; Lapinte,
C. Organometallics 2005, 24, 4558. (r) Ibn, G. S.; Paul, F.; Toupet, L. J.
Am. Chem. Soc. 2006, 128, 2463. (s) Le Stang, S.; Paul, F.; Lapinte, C.
Organometallics 2000, 19, 1035. (t) Roue, S.; Lapinte, C.; Bataille, T.
Organometallics 2004, 23, 2558. (u) Bruce, M. I.; de Montigny, F.; Jevric,
M.; Lapinte, C.; Skelton, B. W.; Smith, M. E.; White, A. H. J. Organomet.
Chem. 2004, 689, 2860. (v) Bruce. M. I.; Low, P. J.; Hartl, F.; Humphrey,
P. A.; de Montigny, F.; Jevric, M.; Lapinte, C.; Perkins, G. J.; Roberts, R.
L.; Skelton, B. W.; White, A. H. Organometallics 2005, 24. 5241. (w)
Guillaume, V.; Mahias, V.; Mari, A.; Lapinte, C. Organometallics 2000,
19, 1422. (x) Le Stang, S.; Paul, F.; Lapinte, C. Inorg. Chim. Acta 1999,
291, 403. (y) Le Stang, S.; Lenz, D.; Paul, F.; Lapinte, C. J. Organomet.
Chem. 1999, 572, 189. (z) Denis, R., Weyland, T., Paul, F.; Lapinte, C. J.
Organomet. Chem. 1997, 546, 615.
been studied extensively by Diederich10 and Vollhardt,11
respectively, and their chemical properties and extension to
higher systems have also been their research subjects. However,
very few studies on their metal complexes have been reported
so far.12
Herein we disclose results of our attempts at the preparation
of B1 and B2 type olefinic complexes bearing the FeCp*(dppe)
fragments (abbreviated as Fe throughout this paper). Although
the attempted preparation of 2D complexes has been unsuc-
cessful, we instead obtained a series of (hex-3-ene-1,5-diyne-
1,6-diyl)diiron complexes C. In comparison to the related A3-
type system consisting only of CtC units, which cannot be
functionalized, the properties of the C-type complexes can be
modified or tuned by introducing appropriate substituents (R)
onto the olefinic part, as verified by the present study.
Results and Discussion
Synthesis of Diiron Complexes with π-Conjugated Spac-
ers. (i) Feasible Synthetic Routes to Two-Dimensional (2D)
Systems. In principle, two routes (a and b) are feasible for the
construction of two-dimensional (2D) systems with FeCp*(dppe)
fragments (D), and the routes involve Fe-Ct or tC-C(sp2)
bond formation at the last stage (Scheme 2; the routes are
exemplified for a poly(ethynyl) derivative). Route a involves
deprotonation of the cationic vinylidene intermediate H, which
can be generated by interaction of the labile solvated cationic
(5) (a) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J.-F.; Best, S. P.;
Heath, G. A. J. Am. Chem. Soc. 2000, 122, 1949. (b) Bruce, M. I.; Kelly,
B. D.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 2000, 604, 150.
(c) Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H.
Organometallics 2003, 22, 3184. (d) Bruce, M. I.; Smith, M. E.; Skelton,
B. W.; White, A. H. J. Organomet. Chem. 2001, 637-639, 484.
(6) (a) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.;
Arif, A. M.; Bohme, M.; Frenking, G.; Gladysz, J. A. J. Am. Chem. Soc.
1997, 119, 775. (b) Bartik, T.; Weng, W.; Ramsden, J. A.; Szafewrt, S.;
Falloon, S. B.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1998, 120,
11071. (c) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A.
J. Am. Chem. Soc. 2000, 122, 810. (d) Zheng, Q.; Gladysz, J. A. J. Am.
Chem. Soc. 2005, 127, 10508.
(10) See, for example: Tykwinski, R. R.; Diederich, F. Liebigs Ann./
Recl. 1997, 649. Diederich, F. Chem. Commun. 2001, 219. Diederich, F.
Chem. Rec. 2002, 2, 189.
(7) (a) Touchard, D.; Dixneuf, P. H. Coord. Chem. ReV. 1998, 178-
180, 409. (b) Fernandez, F. J.; Venkatesan, K.; Blacque, O.; Alfonso, M.;
Schmalle, H. W.; Berke, H. Chem. Eur. J. 2003, 9, 6192. (c) Ren, T.
Organometallics 2005, 24, 4854.
(8) (a) Akita, M.; Moro-oka, Y. Bull. Chem. Soc. Jpn. 1995, 68, 420.
(b) Akita, M.; Sakurai, A.; Chung, M.-C.; Moro-oka, Y. J. Organomet.
Chem. 2003, 670, 2. (c) Akita, M.; Sugimoto, S.; Tanaka, M.; Moro-oka,
Y. J. Am. Chem. Soc. 1992, 114, 7581. (d) Akita, M.; Sugimoto, S.;
Hirakawa, H.; Kato, S.; Terada, M.; Tanaka, M.; Moro-oka, Y. Oganome-
tallics 2001, 20, 1555.
(11) Diercks, R.; Armstrong, J. C.; Boese, R.; Vollhardt, K. P. C. Angew.
Chem., Int. Ed. Engl. 1986, 25, 270. Boese, R.; Green, J. R.; Mittendorf,
J.; Mohler, D. L.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1992,
31, 1643.
(12) As for the TEE system, Che reported synthesis and luminescence
properties of the Au complexes, C2(CtC-Au(PR3))4 and Low14c reported
µ-η2:η2-Co2 adducts: Lu, W.; Zhu, N.; Che, C. M. J. Organomet. Chem.
2003, 670, 11. For TEE-Pt2 complexes, see: Siemsen, P.; Gubler, U.;
Bosshard, C.; Gu¨nter, P. Diederich, F. Chem. Eur. J. 2001, 7, 1333. Recently
Bruce et al. reported the TEE complexes with the (µ3-C)Co3(CO)9 cluster
units. Bruce, M. I.; Zaitseva, N. A.; Low, P. J.; Skeleton, B. W.; White, A.
H. J. Organomet. Chem. 2006, 691, 4273.
(9) Byrne, L. T.; Hos, J. P.; Koutsantonis, G. A.; Skelton, B. W.; White,
A. H. J. Organomet. Chem. 2000, 598, 28.