Published on Web 09/23/2006
Characterization of Self-Assembled Monolayers of Fullerene
Derivatives on Gold Surfaces: Implications for Device
Evaluations
Yasuhiro Shirai, Long Cheng, Bo Chen, and James M. Tour*
Contribution from the Department of Chemistry, Smalley Institute for Nanoscale Science and
Technology, Rice UniVersity, MS-222, 6100 Main Street, Houston, Texas 77005
Received May 17, 2006; E-mail: tour@rice.edu
Abstract: The widely employed approach to self-assembly of fullerene derivatives on gold can be
complicated due to multilayer formations and head-to-tail assemblies resulting from the strong fullerene-
fullerene and fullerene-gold interactions. These anomalies were not examined in detail in previous studies
on fullerene self-assembled monolayers (SAMs) but were clearly detected in the present work using surface
characterization techniques including ellipsometry, cyclic voltammetry (CV), and X-ray photoelectron
spectroscopy (XPS). This is the first time that SAMs prepared from fullerene derivatives of thiols/thiol esters/
disulfides have been analyzed in detail, and the complications due to multilayer formations and head-to-
tail assemblies were revealed. Specifically, we designed and synthesized several fullerene derivatives based
on thiols, thiol acetates, and disulfides to address the characterization requirements, and these are described
and delineated. These studies specifically address the need to properly characterize and control fullerene-
thiol assemblies on gold before evaluating subsequent device performances.
Introduction
due to the well-defined organosulfur adsorption chemistry on
Au surfaces.4 Thiols, thiol esters, or disulfides are known to be
Advances in molecular science continue to push forward the
miniaturization of devices and the innovation of new molecule-
based functional systems.1 Of particular importance for our
group are the fields with potential applications of fullerenes and
fullerene derivatives. Since the discovery of fullerenes,2 due to
their unusual structure and optical and electrical properties, there
has been a tremendous amount of research aimed at developing
new fullerene-based materials with novel useful applications.3
The combination of self-assembled monolayer (SAM) forma-
tion,4 an important aspect in the field of molecular electronics,5
with the advantageous properties of fullerene derivatives could
lead to advances in this field.3,6 In fact, many groups have
worked to construct SAMs of fullerenes or fullerene derivatives
on a variety of substrates including conductive surfaces such
as gold7,8 and other nonconductive, semiconductive, or transpar-
ent conductive surfaces including indium-tin oxide (ITO).9
Among them, studies on gold surfaces are particularly extensive
absorbed onto a gold surface to form a SAM simply by exposing
(7) (a) Caldwell, W. B.; Chen, K.; Mirkin, C. A.; Babinec, S. J. Langmuir
1993, 9, 1945-1947. (b) Arias, F.; God´ınez, L. A.; Wilson, S. R.; Kaifer,
A. E.; Echegoyen, L. J. Am. Chem. Soc. 1996, 118, 6086-6087. (c)
Dom´ınguez, O.; Echegoyen, L.; Cunha, F.; Tao, N. Langmuir 1998, 14,
821-824. (d) Sahoo, R. R.; Patnaik A. J. Colloid Interface Sci. 2003, 268,
43-49. (e) Pan, G.-B.; Liu, J.-M.; Zhang, H.-M.; Wan, L.-J.; Zheng, Q.-
Y.; Bai, C.-L. Angew. Chem., Int. Ed. 2003, 42, 2747-2751. (f) Patnaik,
A.; Setoyama, H.; Ueno, N. J. Chem. Phys. 2004, 120, 6214-6221. (g)
Yoshimoto, S.; Saito, A.; Tsutsumi, E.; D’Souza, F.; Ito, O.; Itaya, K.
Langmuir 2004, 20, 11046-11052. (h) Bonifazi, D.; Spillmann, H.; Kiebele,
A.; de Wild, M.; Seiler, P.; Cheng, F.; Gu¨ntherodt, H.-J.; Jung, T.;
Diederich, F. Angew. Chem., Int. Ed. 2004, 42, 4759-2763. (i) Zhang, S.;
Palkar, A.; Fragoso, A.; Prados, P.; de Mendoza, J.; Echegoyen, L. Chem.
Mater. 2005, 17, 2063-2068. (j) Zhang, S.; Echegoyen, L. J. Org. Chem.
2005, 70, 9874-9881.
(8) (a) Shi, X.; Caldwell, W. B.; Chen, K.; Mirkin, C. A. J. Am. Chem. Soc.
1994, 116, 11598-11599. (b) Kim, S.; Park, S.-K.; Park, C.; Jeon, C., II.
J. Vac. Sci. Technol., B 1996, 14, 1318-1321. (c) Imahori, H.; Ozawa, S.;
Ushida, K.; Takahashi, M.; Azuma, T.; Ajavakom, A.; Akiyama, T.;
Hasegawa, M.; Taniguchi, S.; Okada, T.; Sakata, Y. Bull. Chem. Soc. Jpn.
1999, 72, 485-502. (d) Imahori, H.; Azuma, T.; Ozawa, S.; Yamada, H.;
Ushida, K.; Ajavakom, A.; Norieda, H.; Sakata, Y. Chem. Commun. 1999,
557-558. (e) Shon, Y.-S.; Kelly, K. F.; Halas, N. J.; Lee, T. R. Langmuir
1999, 15, 5329-5332. (f) Kelly, K. F.; Shon, Y.-S.; Lee, T. R.; Halas, N.
J. J. Phys. Chem. B 1999, 103, 8639-8642. (g) Fibbioli, M.; Bandyo-
padhyay, K.; Liu, S.-G.; Echegoyen, L.; Enger, O.; Diederich, F.; Bu¨hlmann,
P.; Pretsch, E. Chem. Commun. 2000, 339-340. (h) Lee, S.; Shon, Y.-S.;
Lee, T. R.; Perry, S. S. Thin Solid Films 2000, 358, 152-158. (i) Liu,
S.-G.; Martineau, C.; Raimundo, J.-M.; Roncali, J.; Echegoyen, L. Chem.
Commun. 2001, 913-914. (j) Zhang, S.; Dong, D.; Gan, L.; Liu, Z.; Huang,
C. New J. Chem. 2001, 25, 606-610. (k) Du, C.; Xu, B.; Li, Y.; Wang,
C.; Wang, S.; Shi, Z.; Fang, H.; Xiao, S.; Zhu, D. New J. Chem. 2001, 25,
1191-1194. (l) Hoang, V. T.; Rogers, L. M.; D’Souza, F. Electrochem.
Commun. 2002, 4, 50-53. (m) Imai, H.; Iwata, N.; Yamamoto, H.
Nanotechnology 2002, 13, 768-770. (n) Yamada, H.; Imahori, H.;
Fukuzumi, S. J. Mater. Chem. 2002, 12, 2034-2040. (o) Kim, K.-S.; Kang,
M.-S.; Ma, H.; Jen, A. K.-Y. Chem. Mater. 2004, 16, 5058-5062. (p) Kang,
S. H.; Ma, H.; Kang, M.-S.; Kim, K.-S.; Jen, A. K.-Y.; Zareie, M. H.;
Sarikaya, M. Angew. Chem., Int. Ed. 2004, 43, 1512-1516. (q) Gu, T.;
Whitesell, J. K.; Fox, M. A. J. Org. Chem. 2004, 69, 4075-4080. (r) Gru¨ter,
L.; Cheng, F.; Heikkila¨, T. T.; Gonza´lez, M. T.; Diederich, F.; Scho¨nen-
berger, C.; Calame, M. Nanotechnoloty 2005, 16, 2143-2248. (s) Zhang,
S.; Echegoyen, L. Tetrahedron 2006, 62, 1947-1954.
(1) (a) Timp, G. L. Nanotechnology; AIP Press/Springer: New York, 1999.
(b) Nanoelectronics and Information Technology: AdVanced Electronic
Materials and NoVel DeVices Information Technology; Waser, R., Ed.;
Wiley-VCH: Weinheim, Germany, 2003. (c) Joachim, C.; Gimzewski, J.
K.; Aviram, A. Nature 2000, 408, 541-548. (d) Forrest, S. R. Nature 2004,
428, 911-918.
(2) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E.
Nature 1985, 318, 162-163.
(3) (a) Prato, M. Top. Curr. Chem. 1999, 199, 173-187. (b) Konishi, T.; Ikeda,
A.; Shinkai, S. Tetrahedron 2005, 61, 4881-4899.
(4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M.
Chem. ReV. 2005, 105, 1103-1169 and references therein.
(5) Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry,
DeVices, Architecture and Programming; World Scientific: River Edge,
NJ, 2003.
(6) (a) Mirkin, C. A.; Caldwell, W. B. Tetrahedron 1996, 52, 5113-5130. (b)
Zeng, C.; Wang, H.; Wang, B.; Yang, J.; Hou, J. G. Appl. Phys. Lett. 2000,
77, 3595-3597.
9
10.1021/ja063451d CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 13479-13489
13479