COMMUNICATION
Figure 1. Molecular structure of 1 with atomic numbering (ORTEP, 50%
probability ellipsoids; H atoms are omitted for clarity). Selected bond lengths
(Å) and angles (deg) for 1: O-Cu, 1.769(4); Cu-P, 2.1496(17); O-Si,
1.578(4); Cu-O-Si, 180.00(1); O-Cu-P, 180.00(1).
Figure 2. Molecular structure of 2 with atomic numbering (ORTEP, 50%
probability ellipsoids; H atoms are omitted for clarity). Selected bond lengths
(Å) and angles (deg) for 2: S-Cu, 2.1578(11); Cu-P, 2.2016(10); S-Si,
2.0916(14); Cu-S-Si, 97.63(5); P-Cu-S, 174.12(4).
and spectroscopic data.10 Interestingly, the 31P{1H} NMR
spectra of all three complexes show a single broadened
resonance due to quadrupolar interactions with the multiple
1
I > /2 Cu isotopes in a low-coordinate environment.11
X-ray-quality crystals of complexes 1-3 were grown from
benzene/pentane (1:3) mixtures at low temperatures. The
X-ray structures of 1-3 reveal that these compounds are
monomeric in the solid state and possess a linear coordination
environment about the Cu atom. The isolation of coordina-
tively unsaturated CuI complexes is a likely result of the
combined steric demand of both the phosphine and the
chalcogenide moieties.
The copper siloxide (1) crystallizes in the P3h point group;
the linear P-Cu-O-Si skeleton lies exactly on a crystal-
lographic 3-fold rotation axis (Figure 1). Two monomeric
units of 1 pack in a head-to-tail fashion in the unit cell.
Although there are some nonbonding interactions between
the peripheral phenyl and isopropyl groups, there are no
apparent d10-d10 Cu‚‚‚Cu interactions (shortest contact, 8.077
Å).12 This contrasts with an analogous linear gold siloxide
system, Ph3PAuOSiPh3, which exists as head-to-tail mono-
mers in the unit cell but with a Au‚‚‚Au interaction distance
of 3.376(2) Å.13 The observed Cu-O bond distance of 1.769-
(4) Å in 1 is significantly shorter than the Cu-O distances
reported for related compounds (hfac)Cu(PMe3) [1.990(8)
and 2.034(7) Å], (dmp)Cu(PMe3) [1.941(5) and 2.030(5) Å],
and (dmb)Cu(PMe3) [1.985(2) Å] (where hfac ) hexafluo-
roacetylacetonate, dmp ) dipivaloylmethanate, and dmb )
dibenzoylmethanate).14
Figure 3. Molecular structure of 3 with atomic numbering (ORTEP, 50%
probability ellipsoids; H atoms are omitted for clarity). Selected bond lengths
(Å) and angles (deg) for 3: Se-Cu, 2.2650(6); Se-Si, 2.2326(10); Cu-P,
2.2014(10); Cu-Se-Si, 95.27(3); Se-Cu-P, 173.28(3).
The molecular geometries of the S (2) and Se (3) analogues
are shown in Figures 2 and 3, respectively. These isomorphic
structures of 2 and 3 show a linear geometry at the Cu atom
similar to the siloxide 1; however, they strikingly differ from
the linear siloxide structure by the nearly orthogonal angle
at the chalcogen atom [97.63(5)° for 2 and 95.27(3)° for 3].
Complex 3 is one of the few examples of a terminally bonded
copper(I) selenolate complex.
The length of the Cu-S bond in 2 [2.1578(11) Å] is in
the normal range for homoleptic copper thiolates: [Cu-
15
(SSiMe2But)]4 [2.1666(4) Å], [Cu(SSiPhtBu2)]4 [2.1597-
17
(7) Å],16 and [Cu(SSiPh3)]4 [2.1633(5) Å]. However, the
Cu-S bond of 2 is significantly shorter than that reported
for (Et3P)3CuSSiMe3 [2.4022(5) Å] and (nPr3P)3CuSSiMe3
[2.3970(10) Å]. Complex 3 also shows a shorter Cu-Se bond
length when compared with the Cu-Se bond lengths in the
analogous complexes (Et3P)3CuSeSiMe3 [2.5124(6) Å] and
(nPr3P)3CuSeSiMe3 [2.5160(4) Å].7 The shorter Cu-chal-
cogen bond lengths in 2 and 3 may be attributed to a
combination of diminished sterics at the Cu atom (dicoor-
(10) Compound Characterization. 1. 1H NMR (δ, C6D6): 0.98 (d, 27H,
3JH-P ) 13 Hz), 7.32 (m, 9H), 8.16 (m, 6H). 13C NMR (δ, C6D6):
142.5 (o-Ph), 135.6 (m-Ph), 128.4 (p-Ph), 36.2 (d, C(CH3)3), 31.6 (d,
C(CH3)3). 31P NMR (δ, C6D6): 72.17. 29Si NMR (δ, C6D6): -24.29.
Elem anal. Calcd: C, 66.57; H, 7.82. Found: C, 66.65; H, 7.25. Mp:
1
3
126 °C (dec). 2. H NMR (δ, C6D6): 0.90 (d, 27H, JH-P ) 13 Hz),
7.20 (m, 9H), 8.12 (m, 6H). 13C NMR (δ, C6D6): 141.6 (o-Ph), 135.9
(m-Ph), 128.4 (p-Ph), 36.3 (d, C(CH3)3), 31.7 (d, C(CH3)3). 31P NMR
(δ, C6D6): 62.4. Elem anal. Calcd: C, 64.65; H, 7.59. Found: C,
64.53; H, 7.07. Mp: >100 °C (dec). 3. 1H NMR (δ, C6D6): 0.93 (d,
3
27H, JH-P ) 13 Hz), 7.25 (m, 9H), 7.75 (m, 6H). 13C NMR (δ,
C6D6): 140.9 (o-Ph), 136.2 (m-Ph), 128.6 (p-Ph), 36.5 (d, C(CH3)3),
31.8 (d, C(CH3)3). 31P NMR (δ, C6D6): 61.2. Mp: >100 °C (dec).
(11) Verkade, J. G.; Mosbo, J. E. In Phosphorus-13 NMR Spectroscopy in
Stereochemical Analysis; Verkade, J. G., Quinn, L., Eds.; VCH
Publishers: Deefield, FL, 1987; p 441.
(12) Pyyko¨, P. Chem. ReV. 1997, 97, 597.
(13) Bauer, A.; Schneider, W.; Angermeier, K.; Schier, A.; Schmidbauer,
H. Inorg. Chem. Acta 1996, 251, 249.
(14) Shin, H. K.; Chi, K. M.; Farkas, J.; Hampden-Smith, M. J.; Kodas, T.
T.; Duesler, E. N. Inorg. Chem. 1992, 31, 424.
(15) Komuro, T.; Matsuo, T.; Kawaguchi, H.; Tatsumi, K. Dalton Trans.
2004, 1618.
(16) Ku¨ckmann, T. I.; Hermsen, M.; Bolte, M.; Wagner, M.; Lerner, H.-
W. Inorg. Chem. 2005, 44, 3449.
(17) Komuro, T.; Kawaguchi, H.; Tatsumi, K. Inorg. Chem. 2002, 41, 5083.
Inorganic Chemistry, Vol. 45, No. 22, 2006 8845