for silver over the other six transition and post transition
metal ions investigated. Apart from the prospect of employing
2 for the sensing or separation of Ag(I), the study serves to
exemplify the use of a stepwise strategy for the rational design of
a ligand system that, in the present case, results in significantly
enhanced discrimination for Ag(I).
4H, C6H4CH2, 7.19–7.50, m, 18H, aromatic. 13C NMR (CD3CN) d
27.16, 30.04, 51.24, 56.49, 57.76, 124.98, 125.92, 127.86, 128.40, 129.21,
130.24, 131.94, 133.42, 134.27, 135.77. Crystals of X-ray quality were
obtained on slow evaporation of an acetonitrile solution of the above
product.
¶ X-Ray
structure
determination:
[Ag2]PF6·MeCN.
Formula
C36H41AgF6N3PS3, M 864.74, Monoclinic, space group P21/c (#14), a
˚
˚
˚
˚
9.1249(14) A, b 24.720(4) A, c 16.670(3) A, b 101.913(3), V 3679.3(10) A,
We thank the Australian Research Council for support.
Dc 1.561 g cm−3, Z 4, crystal size 0.348 × 0.158 × 0.120 mm, colourless,
−1
˚
prism, temperature; 150(2) K, k(MoKa) 0.71073 A, l(MoKa) 0.823 mm
,
T(SADABS)min,max 0.777, 0.906, 2h = 56.64◦, hkl range −12 12, −32 32,
Notes and references
−22 21, N 36352, Nind 8880(Rmerge 0.0501), Nobs 6610(I > 2r(I)), Nvar 452,
residuals* R1(F) 0.0383, wR2(F2) 0.0894, GoF(all) 1.016, Dmin,max −0.314,
‡ Synthesis of 1 (X = Y = S): This was prepared by a modification of a pre-
viously described method.1 2,2-Diaminoethylthioether (257.9 mg, 2 mmol)
was dissolved in absolute ethanol (250 ml) and added dropwise over a
period of 3 h to a solution of 2,2ꢀ-ethane-1,2-diyl(thio)bisbenzaldehyde
(609.5 mg, 2 mmol) in absolute ethanol (600 ml). The reaction mixture
was refluxed for 3 h, then sodium borohydride added with minimum
delay (1.0 g, 25 mmol) and refluxing continued for 12 h. The solvent was
removed on a rotary evaporator and the resulting solid was dissolved in
dichloromethane (50 ml) and 1 M sodium hydroxide solution (15 ml) was
added. The mixture was shaken and the organic layer was removed and
the sodium hydroxide solution was again extracted with dichloromethane
(50 ml). The combined organic extracts were washed with saturated sodium
chloride (20 ml), then taken to dryness on a rotary evaporator. The
resulting white solid was recrystallised from acetonitrile (493 mg, 63%). 1H
NMR (CDCl3) d 2.13, br s, 2H, NH; 2.73–2.77, m, 4H, SCH2CH2N; 2.84–
2.88, m, 4H, SCH2CH2N; 3.23, s, 4H, SCH2CH2S; 3.87, s, 4H, ArCH2;
7.18–7.34, m, 8H, C6H4. 13C NMR (CDCl3) d 32.9, 33.9, 48.2, 52.3,
126.9, 127.9, 130.6, 130.8, 134.2, 140.7. These data correspond to those
reported previously for this compound; the above procedure resulted in a
significantly enhanced yield over that reported for the existing preparation.
§ Synthesis of 2: Sodium hydrogen carbonate (1.32 g, 15.7 mmol) was
added with stirring to a solution of 1 (X = Y = S) (0.350 g, 0.8 mmol) in
acetonitrile (50 ml) and the mixture was heated to reflux. Benzyl bromide
(0.306 g, 1.79 mmol) in acetonitrile (75 ml) was added dropwise over
1.5 h. The reaction mixture was filtered and the filtrate was taken to
dryness on a rotary evaporator. The solid that remained was partitioned
between water (50 ml) and dichloromethane (100 ml). The organic layer
was separated and the water layer was washed with a further 2 × 50 ml of
dichloromethane. The combined organic fractions were backwashed with
water (50 ml), dried over anhydrous sodium sulfate, filtered, and the solvent
removed on a rotary evaporator. The resulting solid was recrystallised
from acetone–methanol (1 : 1) containing small amounts of acetonitrile
and dichloromethane (Yield, 0.326 g, 63.8%). (Found: C, 69.87; H, 6.18; N,
4.85%. C34H38N2S3 requires C, 69.48; H, 6.55; N, 4.73%). 1H NMR (CDCl3)
d 2.58–2.63, m, 4H, SCH2CH2N; 2.71–2.76, m, 4H, SCH2CH2N; 3.16, s,
4H, SCH2CH2S; 3.56, s, 4H, C6H5CH2; 3.73, s, 4H, ArCH2; 7.14–7.43, m,
18H, arom. 13C NMR (CDCl3) d 28.7, 33.9, 54.4, 57.0, 57.7, 126.1, 126.8,
127.4, 128.1, 128.6, 129.8, 130.0, 135.1, 139.3, 140.5. MS ESI (methanol):
m/z = 571.2 (M + H)+; when Ag(I) nitrate was added to the ligand sample
the ESI (methanol–acetonitrile) spectrum also yielded a peak at m/z =
679.3 corresponding to (M + Ag)+. Synthesis of [Ag(2)]PF6·0.5CH3CN:
AgPF6 (53 mg, 0.21 mmol) in acetonitrile (4 ml) was added to 2 (118 mg,
0.21 mmol) in dichloromethane (2 ml). Diethyl ether vapour was slowly
diffused into this solution to yield needle-like crystals which were filtered
off and washed with diethyl ether. These crystals were crushed and dried
under vacuum before microanalysis. (143 mg, 84%). Mp 126–128 ◦C. MS
(ESI): m/z = 679.3 (M + Ag)+ (Found: C, 49.84; H, 4.98; N, 4.03%.
0.608 e−
−3. *R1 = RꢁFo| − |Fcꢁ/R|Fo| for Fo > 2r(Fo); wR2 =
˚
A
2
(Rw(Fo − Fc2)2/R(wFc2)2)1/2 all reflections w = 1/[r2 (Fo2)+(0.0406P)2 +
1.5802P] where P = (Fo + 2Fc2)/3. CCDC reference number 616061.
2
For crystallographic data in CIF or other electronic format see DOI:
10.1039/b613636m
1 D. S. Baldwin, P. A. Duckworth, G. R. Erickson, L. F. Lindoy,
M. McPartlin, G. M. Mockler, W. E. Moody and P. A. Tasker,
Aust. J. Chem., 1987, 40, 1861.
2 K. R. Adam, M. Antolovich, D. S. Baldwin, L. G. Brigden, P. A.
Duckworth, L. F. Lindoy, A. Bashall, M. McPartlin and P. A. Tasker,
J. Chem. Soc., Dalton Trans., 1992, 1869.
3 K. R. Adam, D. S. Baldwin, L. F. Lindoy, G. V. Meehan, I. Vasilescu
and G. Wei, Inorg. Chim. Acta, 2003, 352, 46.
4 K. R. Adam, D. S. Baldwin, P. A. Duckworth, L. F. Lindoy, M.
McPartlin, A. Barshall, H. R. Powell and P. A. Tasker, J. Chem. Soc.,
Dalton Trans., 1995, 1127.
5 K. R. Adam, D. S. Baldwin, P. A. Duckworth, A. J. Leong, L. F. Lindoy,
M. McPartlin and P. A. Tasker, J. Chem. Soc., Chem. Commun., 1987,
1124.
6 (a) R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533; (b) R. G. Pearson,
Coord. Chem. Rev., 1990, 100, 403.
7 U. Kallert and R. Mattes, Inorg. Chim. Acta, 1991, 180, 263.
8 U. Kallert and R. Mattes, Polyhedron, 1992, 11, 617.
9 J. R. Price, M. Fainerman-Melnikova, R. R. Fenton, K. Gloe, L. F.
Lindoy, T. Rambusch, B. W. Skelton, P. Turner, A. H. White and K.
Wichmann, Dalton Trans., 2004, 3715 and ref. therein.
10 L. F. Lindoy, Pure Appl. Chem., 1997, 69, 2179.
11 T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, G. Wei and A. N.
Widmer-Cooper, J. Chem. Soc., Dalton Trans., 2001, 614.
12 J. Kim, T.-H. Ahn, M. Lee, A. J. Leong, L. F. Lindoy, B. R. Rumbel,
B. W. Skelton, T. Strixner, G. Wei and A. H. White, J. Chem. Soc.,
Dalton Trans., 2002, 3993.
13 Y. Dong, S. Farquhar, K. Gloe, L. F. Lindoy, B. R. Rumbel, P. Turner
and K. Wichmann, Dalton Trans., 2003, 1558.
14 (a) H. Tsukube, K. Tagaki, T. Higashiyama, T. Iwachido and N.
Hayama, J. Chem. Soc., Perkin Trans. 1, 1986, 1033; (b) H. Tsukube,
K. Yamashita, T. Iwachido and M. Zenki, J. Chem. Soc., Perkin Trans.
1, 1991, 1661.
15 M. Fainerman-Melnikova, A. Nezhadali, G. Rounaghi, J. C. McMur-
trie, J. Kim, K. Gloe, M. Langer, S. S. Lee, L. F. Lindoy, T. Nishimura,
K.-M. Park and J. Seo, Dalton Trans., 2004, 122.
16 N. Navon, G. Golub, H. Cohen, P. Paoletti, B. Valtancoli, A. Bencini
and D. Meyerstein, Inorg. Chem., 1999, 38, 3484.
17 T. Clark, M. Hennemann, R. van Eldik and D. Meyerstein, Inorg.
Chem., 2002, 41, 2927.
18 P. S. K. Chia, L. F. Lindoy, G. W. Walker and G. W. Everett, Pure Appl.
Chem., 1993, 65, 521.
1
C34H38AgF6N2 PS3·0.5CH3CN requires C, 49.80; H, 4.72; N, 4.15%). H
NMR (CD3CN) d 2.63–2.69, m, 4H, SCH2CH2N, 2.95–3.00, m, 4H,
SCH2CH2N, 3.36, s, 4H, SCH2CH2S, 3.66, s, 4H, C6H5CH2, 3.70, s,
19 S. S. Lee, I. Yoon, K. M. Park, J. H. Jung, L. F. Lindoy, A. Nezhadali
and G. Rounaghi, J. Chem. Soc., Dalton Trans., 2002, 2180.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 5115–5117 | 5117
©