dP (282.46 MHz; CDCl3) −144.28 (q, J 713) MS (MALDI-TOF,
Acknowledgements
+
MeOH–MeCN): m/z 1663.13 [M–PF6 ].
We thank the EPSRC for a studentship (D. P. C.). Oxford Diffrac-
tion Ltd. are thanked for the loan of the Gemini diffractometer.
UV/Visible anion titration protocol
In a typical experiment, aliquots of guest (2.5 × 10−5 mol in
5 ml) were added to a 3 ml solution of the host (5 × 10−5 M)
at 293 K. Twenty eight aliquots were added (13 × 2 ll, 1 × 4 ll,
6 × 5 ll, 4 × 15 ll, 4 × 60 ll). Spectra were recorded and the data
was analysed by the computer program SpecfitꢀC . The spectra
together with the host and guest concentrations were read into the
program for every titration point and the complex stoichiometry
and whether the components species were coloured was entered.
The parameters were refined by global analysis that uses singular
value decomposition and non-linear modelling by the Levenberg–
Marquardt method. Using the calculated stability constants, the
program plots the predicted spectra of the component species
together with the observed and calculated absorption vs. guest
concentration at a given wavelength, both of which reveal the
accuracy of the experimental data and the suitability of the model.
The program also gives the best-fit values of the stability constants
together with their errors. The parameters were varied until the
values for the stability constants converged.
References
1 (a) P. A. Gale, Coord. Chem. Rev., 2003, 240, 191; (b) F. P. Schmidtchen
and M. Berger, Chem. Rev., 1997, 97, 1609; (c) P. D. Beer and D. K.
Smith, Prog. Inorg. Chem., 1997, 46, 1; (d) J. L. Atwood, K. T. Holman
and J. W. Steed, Chem. Commun., 1996, 1401; (e) Eds. A. Bianchi,
K. Bowman-James and E. Garc´ıa-Espa˜na, Supramolecular Chemistry
of Anions, New York, Chichester, Wiley-VCH, 1997; (f) K. Bowman-
James, Acc. Chem. Res., 2005, 38, 671.
2 (a) R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103,
4419; (b) P. D. Beer and E. J. Hayes, Coord. Chem. Rev., 2003,
240, 167; (c) C. Sukasi and T. Tuntulani, Chem. Soc. Rev., 2003, 32,
192.
3 (a) M. Nappa and J. S. Valentine, J. Am. Chem. Soc., 1978, 100, 5075;
(b) A. S. Hinman and B. J. Pavelich, J. Electroanal. Chem., 1989, 269,
53.
4 (a) M. J. Gunter, S. M. Farquhar and K. M. Mullen, New J. Chem.,
2004, 28, 1443; (b) M. Takeuchi, T. Shioya and T. M. Swager, Angew.
Chem., Int. Ed., 2001, 40, 3372; (c) M. Dudicˇ, P. Lhota´k, I. Stibor,
K. Lang and P. Prosˇkova´, Org. Lett., 2003, 5, 149; (d) P. K. Panda
and C.-H. Lee, J. Org. Chem., 2005, 70, 3148; (e) C. Bucher, C. H.
Devillers, J.-C. Moutet, G. Royal and E. Saint-Aman, New J. Chem.,
2004, 28, 1584; (f) S. D. Starnes, S. Arungundram and C. H. Saunders,
Tetrahedron Lett., 2002, 43, 7785; (g) P. D. Beer, M. G. D. Drew and
R. Jagessar, J. Chem. Soc., Dalton Trans., 1997, 881; (h) P. D. Beer
and J. Cadman, Coord. Chem. Rev., 2000, 205, 131; (i) P. D. Beer, D. P.
Cormode and J. J. Davis, Chem. Commun., 2004, 414; (j) R. C. Jagessar,
M. Shang, W. R. Scheidt and D. H. Burns, J. Am. Chem. Soc., 1998, 120,
11684; (k) C. Lee, D. H. Lee and J.-I. Hong, Tetrahedron Lett., 2001, 42,
8665.
5 (a) K. Sato, S. Arai and T. Yamagishi, Tetrahedron Lett., 1999, 40,
5219; (b) H. Ihm, S. Yun, H. G. Kim, J. K. Kim and K. S. Kim, Org.
Lett., 2002, 4, 2897; (c) J. Yoon, S. K. Kim, N. J. Singh, J. W. Lee,
Y. J. Yang, K. Chellappan and K. S. Kim, J. Org. Chem., 2004, 69,
581; (d) J. Y. Kwon, N. J. Singh, H. N. Kim, S. K. Kim, K. S. Kim
and J. Yoon, J. Am. Chem. Soc., 2004, 126, 8892; (e) K. Chellappan,
N. J. Singh, I.-C. Hwang, J. W. Lee and K. S. Kim, Angew. Chem.,
Int. Ed., 2005, 44, 2899; S. Ramos, E. Alcalde, G. Doddi, P. Mencarelli
and L. Perez-Garcia, J. Org. Chem., 2002, 67, 8463; E. Alcalde, S.
Ramos and L. Perez-Garcia, Org. Lett., 1999, 1, 1035; (f) J. Yoon,
S. K. Kim, N. J. Singh and K. S. Kim, Chem. Soc. Rev., 2006, 35,
355.
6 J. P. Collman, R. R. Gagne, C. A. Reed, T. R. Halbert, G. Long and
W. T. Robinson, J. Am. Chem. Soc., 1975, 97, 1424.
7 J. S. Lindsey, J. Org. Chem., 1980, 45, 5215.
8 J. P. Collman, B. Boitrel, L. Fu, J. Galanter, A. Straumanis and M.
Rapta, J. Org. Chem., 1997, 62, 2308.
9 R. A. Binstead, A. D. Zuberbuhler and B. Jung, Specfit 3.0.30,
Spectrum Software Associates, 2002.
10 C. R. Bondy, P. A. Gale and S. J. Loeb, J. Am. Chem. Soc., 2004, 126,
5031.
11 K. M. Kadish, E. van Caemelbecke and G. Royal, The Porphyrin
Handbook, ed. K. M. Kadish, Academic, London, 2000, vol. 8,
ch. 55.
Luminescence anion titration protocol
In a typical experiment, aliquots of guest (1.5 × 10−5 mol in
5 ml) were added to a 3 ml solution of the host (1 × 10−5 M)
at 293 K. Twenty nine aliquots were added (15 × 2 ll and 14 ×
5 ll). Spectra were recorded and the data was analysed by the
computer program SpecfitꢀC , in a method as described above.
X-Ray crystallography
Single crystals of the 3:pyridine complex were grown by slow
diffusion of diethyl ether into a THF solution of 3 and an excess of
pyridine. Crystals were mounted on a glass fibre and cooled rapidly
to 150 K in a stream of cold nitrogen using an Oxford Cryosystems
CRYOSTREAM unit. Diffraction data were measured using
an Oxford Diffraction Gemini CCD diffractometer (graphite-
˚
monochromated Cu-Ka radiation, k = 1.54248 A). Intensity
data were processed using the Crysalis package.14 Structures were
solved by direct methods using the SIR92 program.15 Full-matrix
least-squares refinement was carried out using the CRYSTALS
program suite.16 Hydrogen atoms were positioned geometrically
after each cycle of refinement. A three-term Chebychev polyno-
mial weighting scheme was applied.
12 P. G. Seybold and M. Gouterman, J. Mol. Spectrosc., 1969, 31, 1.
13 (a) P. J. Alaimo, D. W. Peters, J. Arnold and R. G. Bergman, J. Chem.
Educ., 2001, 78, 64; (b) A. B. Pangborn, M. A. Giardello, R. H. Grubbs,
R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518.
14 Crysalis, Oxford Diffraction, 2005.
15 A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C.
Burla, G. Ploidori and M. Camalli, J. Appl. Crystallogr., 1994, 27,
435.
Crystal data for 3. Chemical formula: C57H41Cl4N9O4-
Zn·xC4H8O (x ∼ 1.63), M = 1240.96, monoclinic, space group =
˚
P21/n, a = 13.3651(2), b = 27.1137(3), c = 16.4073(2) A, T =
150 K, Z = 4, l = 2.711 mm−1, reflections measured = 27764,
Rint = 0.035, R = 0.0574.
CCDC reference number 618393.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b609817g
16 CRYSTALS Issue 12,P. W. Betteridge, J. R. Cooper, R. I. Cooper, K.
Prout and D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487.
5140 | Dalton Trans., 2006, 5135–5140
This journal is
The Royal Society of Chemistry 2006
©