2672
Y. Kobayashi, Y. Motoyama
LETTER
(13) (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc.
1981, 103, 2127. (b) Evans, D. A. Aldrichimica Acta 1982,
15, 23.
(14) A TBS ether was also synthesized from aldol 10 and
hydrolyzed to acid, in 64% yield for the two steps. However,
subsequent Curtius rearrangement did not take place, even
under more forcing conditions than those used for 11, and
instead gave a mixture of the starting acid and other
unidentified products.
(15) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett.
1987, 28, 6141.
(16) Probably due to steric hindrance, the hydrolysis with H2O2
and LiOH in aqueous THF required a higher temperature of
70 °C.
(17) (a) Sibi, M. P.; Lu, J.; Edwards, J. J. Org. Chem. 1997, 62,
5864. (b) Jacobi, P. A.; Murphree, S.; Rupprecht, F.; Zheng,
W. J. Org. Chem. 1996, 61, 2413. (c) Sibi, M. P.;
Deshpande, P. K. J. Chem. Soc., Perkin Trans. 1 2000, 1461.
(18) Clean formation of the isocyanate 12 was detectable by
TLC.
Acknowledgment
This work was supported by a Grant-in-Aid for Scientific Research
from the Ministry of Education, Science, Sports, and Culture,
Japan.
References and Notes
(1) (a) Kaufman, T. S.; Rúveda, E. A. Angew. Chem. Int. Ed.
2005, 44, 854. (b) Hoffmann, H. M. R.; Frackenpohl, J. Eur.
J. Org. Chem. 2004, 4293. (c) Kacprzak, K.; Gawroński, J.
Synthesis 2001, 961.
(2) Recent examples: (a) Vakulya, B.; Varga, S.; Csámpai, A.;
Soós, T. Org. Lett. 2005, 7, 1967. (b) Andrus, M. B.; Liu, J.;
Ye, Z.; Cannon, J. F. Org. Lett. 2005, 7, 3861.
(c) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.;
Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219.
(3) (a) Woodward, R. B.; Doering, W. E. J. Am. Chem. Soc.
1944, 66, 849. (b) Gutzwiller, J.; Uskoković, M. R. J. Am.
Chem. Soc. 1978, 100, 576.
(19) To a solution of acid 11 (408 mg, 0.728 mmol) and Et3N
(0.21 mL, 1.49 mmol) in benzene (1.5 mL) were added
DPPA (0.19 mL, 0.891 mmol) and 2-trimethylsilylethanol
(0.21 mL, 1.47 mmol). The solution was heated to reflux for
12 h, cooled to r.t., and diluted with sat. NaHCO3. The
resulting mixture was extracted with EtOAc four times. The
combined extracts were dried over MgSO4 and concentrated
to afford an oil, which was purified by chromatography on
silica gel (hexane–EtOAc) to afford 13 (381 mg, 77%).
(20) The 1H NMR spectral data of selected compounds (300
MHz, CDCl3).
(4) Stork, G.; Niu, D.; Fujimoto, A.; Koft, E. R.; Balkoves, J.
M.; Tata, J. R.; Dake, G. R. J. Am. Chem. Soc. 2001, 123,
3239.
(5) Jacobsen, E. N.; Raheen, I. T.; Goodman, S. N. J. Am. Chem.
Soc. 2004, 126, 706.
(6) (a) Igarashi, J.; Katsukawa, M.; Wang, Y.-G.; Acharya, H.
P.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 3783.
(b) Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2005, 46,
6381.
(7) Synthesis of 4a: (a) Solladié-Cavallo, A.; Roje, M.; Baram,
A.; Sunjić, V. Tetrahedron Lett. 2003, 44, 8501.
(b) Solladié-Cavallo, A.; Marsol, C.; Yaakoub, M.; Azyat,
K.; Klein, A.; Roje, M.; Suteu, C.; Freedman, T. B.; Cao, X.;
Nafie, L. A. J. Org. Chem. 2003, 68, 7308. (c) Bojadziev,
S. E.; Tsankov, D. T.; Ivanov, P. M.; Berova, N. D. Bull.
Chem. Soc. Jpn. 1987, 60, 2651. (d) Meyers, A. I.;Edwards,
P. D.; Bailey, T. R.; Jagdmann, G. E. Jr. J. Org. Chem. 1985,
50, 1019. (e) Fauley, J. J.; LaPidus, J. B. J. Org. Chem.
1971, 36, 3065.
Compound 4a: d = 1.10–1.90 (m, 8 H), 2.61 (dt, J = 3, 12 Hz,
1 H), 2.71–2.79 (m, 1 H), 3.03 (d, J = 11 Hz, 1 H), 4.55 (d,
J = 5.4 Hz, 1 H), 7.19–7.48 (m, 5 H).
Compound 4b: d = 1.10–1.80 (m, 8 H), 2.71 (dt, J = 3, 12
Hz, 1 H), 3.04–3.19 (m, 2 H), 5.46 (d, J = 4.5 Hz, 1 H), 7.42–
7.56 (m, 4 H), 7.73 (d, J = 7 Hz, 1 H), 7.79 (d, J = 8 Hz, 1
H), 7.88 (d, J = 7 Hz, 1 H), 8.08 (d, J = 7 Hz, 1 H).
Compound 10: d = 1.01 (s, 9 H), 1.20–2.10 (m, 6 H), 2.52–
2.62 (m, 2 H), 3.24 (dd, J = 13, 3 Hz, 1 H), 3.61 (t, J = 6 Hz,
2 H), 3.76 (t, J = 9 Hz, 1 H), 3.99 (dd, J = 9, 2 Hz, 1 H),
4.32–4.43 (m, 2 H), 4.91 (dd, J = 6, 3 Hz, 1 H), 7.14–7.48
(m, 16 H), 7.62–7.75 (m, 4 H).
(8) Synthesis of 4b in racemic form: see ref. 7a,b.
(9) Ho, G.-J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271.
(10) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K.
J. Org. Chem. 2001, 66, 894.
Compound 14: d = 0.05 (s, 9 H), 0.99 (t, J = 8 Hz, 2 H),
1.10–1.70 (m, 7 H), 2.95 (br s, 1 H), 3.56 (t, J = 6 Hz, 2 H),
3.87–4.00 (m, 1 H), 4.17 (t, J = 8 Hz, 2 H), 4.71 (d, J = 8 Hz,
1 H), 4.88 (br s, 1 H), 7.22–7.45 (m, 5 H).
(11) (a) House, H. O.; Crumrine, D. S.; Teranishi, A. Y.;
Olmstead, H. D. J. Am. Chem. Soc. 1973, 95, 3310.
(b) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem.
Soc. 1974, 96, 7503.
Compound 15: d = 0.05 (s, 9 H), 0.99 (t, J = 8 Hz, 2 H),
1.10–1.70 (m, 6 H), 2.45 (s, 3 H), 2.88 (s, 1 H), 3.60–4.30
(m, 5 H), 4.71 (d, J = 8 Hz, 1 H), 4.85 (br s, 1 H), 7.20–7.46
(m, 7 H), 7.66 (d, J = 7 Hz, 2 H).
Compound 16: d = 1.00 (s, 9 H), 1.10–2.10 (m, 6 H), 2.51
(dd, J = 13, 10 Hz, 1 H), 3.01 (d, J = 3 Hz, 1 H), 3.23 (dd,
J = 13, 3 Hz, 1 H), 3.54–3.65 (m, 3 H), 3.92 (dd, J = 9, 2 Hz,
1 H), 4.05–4.22 (m, 1 H), 4.57–4.68 (m, 1 H), 5.74 (dd,
J = 6, 3 Hz, 1 H), 7.06–8.14 (m, 22 H).
Compound 19: d = 0.05 (s, 9 H), 0.80–1.70 (m, 8 H), 2.53 (br
s, 1 H), 3.45 (t, J = 6 Hz, 2 H), 3.95–4.16 (m, 1 H), 4.23 (t,
J = 8 Hz, 2 H), 5.11 (d, J = 8 Hz, 1 H), 5.78 (s, 1 H), 7.30–
8.30 (m, 7 H).
Compound 20: d = 0.05 (s, 9 H), 1.05 (t, J = 8 Hz, 2 H),
1.10–1.60 (m, 6 H), 2.39 (br s, 1 H), 2.42 (s, 3 H), 3.84 (t,
J = 8 Hz, 2 H), 3.96–4.07 (m, 1 H), 4.23 (t, J = 8 Hz, 2 H),
5.02 (d, J = 8 Hz, 1 H), 5.76 (br s, 1 H), 7.20–8.30 (m, 11 H).
(12) Aldol reaction of a simpler compound i with PhCHO was
preliminarily studied by using the protocols developed by
Evans13 (Bu2BOTf and 9-BBNOTf with Et3N and i-Pr2NEt)
and Crimmins10 (TiCl4 with sparteine). The former was
unsuccessful, while the latter produced aldol ii
(syn:anti = 84:16) in 79% yield (JHa–Hb = 5 Hz for the syn
isomer; JHa–Hb = 8 Hz for the anti isomer; Figure 2).
O
O
O
O
Ha
Hb
RO
RO
N
O
N
O
Ph
OH
i
ii
R = TBDPS
Figure 2
Synlett 2006, No. 16, 2670–2672 © Thieme Stuttgart · New York