Kawanami et al.
JOCArticle
SCHEME 1. Photocyclodimerization of 2-Anthracenecarboxylic Acid (AC) and Chiral Templates TKS159 and TM166 That Are
Epimeric to Each Other
liquid crystals13,14 or in isotropic media with the use
of chiral host systems.4 Examples of supramolecular host
systems in solution for which photochirogenesis has
been investigated include cyclodextrins,15-21 DNA,22 and
hydrogen-bonding templates.23-25
on the amide functionality.23,24,26-34 Host-guest binding
was directed by a small number (two or three) of hydrogen
bonds, and stereochemical control was accomplished for
photochemical reactions by shielding one of the enantiofaces
of the prochiral molecule. Moderate to high enantiomeric
excesses (ee) were observed. Many of the reactions studied
were unimolecular, but examples were also reported for
bimolecular reactions where one reaction partner is com-
plexed to the chiral template.35,36
Photochirogenesis involving bimolecular reactions adds
another layer of complexity because the two reaction
partners can either be in close proximity at the time of
excitation or they have to diffuse and form an encounter
complex before products are formed. Anthracenes photo-
dimerize readily,37,38 and when asymmetrically substituted,
such as in the case of 2-anthracenecarboxylic acid (AC),
form four configurational isomers of which two products
are chiral (Scheme 1). The photodimerization of AC has
been used as a model reaction in several supramolecular
systems.17,18,20,21,39-43
In anisotropic solid media the spatial relationship is well-
defined and dictates the stereochemical outcome of reac-
tions. Mechanistic information is drawn from the knowledge
of the spatial distribution of molecules in the media, but
changes in the stereochemical outcome are frequently diffi-
cult to achieve without changing the whole medium. In
contrast, supramolecular host-guest systems in isotropic
media provide the ability to manipulate the conformations
and orientations of the prochiral reactants in the chiral host
systems by making subtle changes in environmental factors
within the host-guest system without having to change the
bulk environment, i.e., the solvent system. The drawback for
the use of supramolecular systems in isotropic media is that
mechanistic information is not as readily available as that
from the structural determination in anisotropic media.
Therefore, it is essential to develop experimental approaches
to elucidate the mechanisms that operate in photochirogen-
esis in isotropic media to establish the conceptual framework
necessary for the design of new chiral hosts with increased
chiral discrimination ability.
(26) Aechtner, T.; Dressel, M.; Bach, T. Angew. Chem. 2004, 43, 5849–
5851.
€
(27) Bach, T.; Aechtner, T.; Neumulller, B. Chem. Eur. J. 2002, 8, 2464–
2475.
(28) Bach, T.; Bergmann, H. J. Am. Chem. Soc. 2000, 122, 11525–11526.
(29) Bach, T.; Bergmann, H.; Harms, K. Angew. Chem. 2000, 39, 2302–
2304.
(30) Bach, T.; Bergmann, H.; Harms, K. Org. Lett. 2001, 3, 601–603.
Photochirogenesis has been achieved previously with the
use of hydrogen-bonding templates, such as templates based
€
(31) Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T. Nature 2005, 436,
(13) Leigh, W. J.; Workentin, M. S. In Handbook of Liquid Crystals;
Demun, D., Ed.; Wiley-VCH: Weinheim, 1998; pp 839-895.
(14) Ishida, Y.; Kai, Y.; Kato, S.; Misawa, A.; Mano, S.; Matsuoka, Y.;
Saigo, K. Angew. Chem. 2008, 47, 8241–8245.
1139–1140.
(32) Brandes, S.; Seiling, P.; Bach, T. Synlett 2004, 14, 2588–2590.
(33) Selig, P.; Bach, T. J. Org. Chem. 2006, 71, 5662–5673.
€
(34) Muller, C.; Bauer, A.; Bach, T. Angew. Chem. 2009, 48.
(15) Inoue, Y.; Dong, F.; Yamamoto, K.; Tong, L.-H.; Tsuneishi, H.;
Hakushi, T.; Tai, A. J. Am. Chem. Soc. 1995, 117, 11033–11034.
(16) Inoue, Y.; Wada, T.; Sugahara, N.; Yamamoto, K.; Kimura, K.;
Tong, L.; Gao, X.; Hou, Z.; Liu, Y. J. Org. Chem. 2000, 65, 8041–8050.
(17) Nakamura, A.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 966–972.
(18) Nakamura, A.; Inoue, Y. J. Am. Chem. Soc. 2005, 127, 5338–5339.
(19) Rao, V. P.; Turro, N. J. Tetrahedron Lett. 1989, 30, 4641–4644.
(20) Tamaki, T.; Kokubu, T.; Ichimura, K. Tetrahedron 1987, 43, 1485–
1494.
(21) Yang, C.; Nakamura, A.; Fukuhara, G.; Origane, Y.; Mori, T.;
Wada, T.; Inoue, Y. J. Org. Chem. 2006, 71, 3126–3136.
(22) Wada, T.; Sugahara, N.; Kawano, M.; Inoue, Y. Chem. Lett. 2000,
1174–1175.
(35) Grosch, B.; Orlebar, C. N.; Herdtwec, E.; Kaneda, M.; Wada, T.;
Inoue, Y.; Bach, T. Chem. Eur. J. 2004, 10, 2179–2189.
(36) Grosch, B.; Orlebar, C. N.; Herdtweck, E.; Massa, W.; Bach, T.
Angew. Chem. 2003, 42, 3693–3696.
(37) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R.
Chem. Soc. Rev. 2000, 29, 43–55.
(38) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R.
Chem. Soc. Rev. 2001, 30, 248–263.
(39) Yang, C.; Fukuhara, G.; Nakamura, A.; Origane, Y.; Fujita, K.;
Yuan, D.-Q.; Mori, T.; Wada, T.; Inoue, Y. J. Photochem. Photobiol., A
2005, 173, 375–383.
(40) Yang, C.; Nakamura, A.; Wada, T.; Inoue, Y. Org. Lett. 2006, 8,
3005–3008.
(23) Bach, T.; Bergmann, H.; Grosch, B.; Harms, K. J. Am. Chem. Soc.
2002, 124, 7982–7990.
(24) Cauble, D. F.; Lynch, V.; Krische, M. J. J. Org. Chem. 2003, 68,
15–21.
(25) Mizoguchi, J.; Kawanami, Y.; Wada, T.; Kodama, K.; Anzai, K.;
Yanagi, T.; Inoue, Y. Org. Lett. 2006, 8, 6051–6054.
(41) Wada, T.; Nishijima, M.; Fujisawa, T.; Sugahara, N.; Mori, T.;
Nakamura, A.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 7492–7493.
(42) Nishijima, M.; Pace, T. C. S.; Nakamura, A.; Mori, T.; Wada, T.;
Bohne, C.; Inoue, Y. J. Org. Chem. 2007, 72, 2707–2715.
(43) Nishijima, M.; Wada, T.; Mori, T.; Pace, T. C. S.; Bohne, C.; Inoue,
Y. J. Am. Chem. Soc. 2007, 129, 3478–3479.
J. Org. Chem. Vol. 74, No. 20, 2009 7909