LETTER
Heck Reaction in the Synthesis of Macrocycles
2933
I
References and Notes
1) (S)-prolinol,
MgSO4
I
1) PPh3/DEAD
2) 29
(1) For recent reviews on macrocyclic chemistry, see:
N
CHO
N
(a) Arico, F.; Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart,
J. F. Chem. Eur. J. 2005, 11, 4655. (b) Bowman-James, K.
Acc. Chem. Res. 2005, 38, 671. (c) Schalley, C. A.;
Wielandt, T.; Brüggemann, J.; Vögtle, F. Top. Curr. Chem.
2004, 248, 141. (d) Wessjohann, L. A.; Ruijter, E. Top.
Curr. Chem. 2005, 243, 137. (e) Botta, B.; Cassani, M.;
D’Acquarica, I.; Misiti, D.; Subissati, D.; Delle Monache, G.
Curr. Org. Chem. 2005, 9, 337 . For recent reviews on the
synthetic challenges represented by macrocycles, see:
(f) Blankenstein, J.; Zhu, J. P. Eur. J. Org. Chem. 2005,
1949. (g) Bonaga, L. V. R.; Zhang, H. C.; Moretto, A. F.;
Ye, H.; Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff, B. E.
J. Am. Chem. Soc. 2005, 127, 3473. (h) Beletskaya, I. P.;
Bessmertnykh, A. G.; Averin, A. D.; Denat, F.; Guilard, R.
Eur. J. Org. Chem. 2005, 281. (i) Schalley, C. A.; Reckien,
W.; Peyerimhoff, S.; Baytekin, B.; Vögtle, F. Chem. Eur. J.
2004, 10, 4777. (j) Barrett, A. G. M.; Hennessy, A. J.; Le
Vezouet, R.; Procopiou, P. A.; Seale, P. W.; Stefaniak, S.;
Upton, R. J.; White, A. J. P.; Williams, D. J. J. Org. Chem.
2004, 69, 1028.
N
2) NaBH4
OH 3) (PhO)2P(O)N3
4) H2O
Bn
Bn
23
29
70% yield
PPh3
(2 equiv),
H2O
I
I
acryloyl chloride
(10 equiv)
N
N
N
N
N3 THF, 50 °C,
20 h
Et3N, DMAP
NH2
Bn
Bn
30
31
63% yield
93% yield
Pd(OAc)2
(10 mol%)
n-Bu4NCl
(1 equiv)
I
N
N
NH
NaHCO3
(2.5 equiv)
DMF, 110 °C,
16 h
Bn
(2) For a review of applications of non-peptidic macrocycles
derived from amino acids, see: Gibson, S. E.; Lecci, C.
Angew. Chem. Int. Ed. 2005, 45, 1364.
O
32
33
27% yield
39% yield
(3) (a) For a synthesis of K-13 analogues, see: Cristau, P.; Vors,
J. P.; Zhu, J. Org. Lett. 2003, 5, 5575. (b) For a synthesis of
K-13, see: Boger, D. L.; Yohannes, D. J. Org. Chem. 1989,
54, 2498. (c) For fermentation, isolation and biological
properties, see: Kase, H.; Kaneko, M.; Yamada, K. J.
Antibiotics 1987, 40, 450.
Scheme 6
These pairs of macrocycles are then linked to neighbor-
ing, lattice translated, pairs by hydrogen bonds involving
the included water molecule, one of the N–H protons of
macrocycle A linking to the water molecule (interaction
a), and one of the water protons linking to one of the car-
bonyl oxygen atoms of macrocycle B (interaction d).22
This serves to form a continuous stack of macrocycles
along the crystallographic a direction, with the edges of
the macrocycles lined up so as to form a pseudo-tube.
(4) (a) Tabudravu, J. N.; Morris, L. A.; Milne, B. F.; Jaspars, M.
Org. Biomol. Chem. 2005, 3, 745. (b) Wintjens, R.; Liévin,
J.; Rooman, M.; Buisine, E. J. Mol. Biol. 2000, 302, 395.
(c) Cioca, D. P.; Kitano, K. Cell. Mol. Life Sci. 2002, 59,
1377. (d) Bubb, M. R.; Spector, I.; Beyer, B. B.; Fosen, K.
M. J. Biol. Chem. 2000, 275, 5163. (e) For a total synthesis
of jaspamide, see: Yoshiro, H.; Katsuyuki, Y.; Takefumi, M.
Heterocycles 1994, 39, 603.
(5) Ranganathan, D.; Samant, M. P.; Nagaraj, R.; Bikshapathy,
E. Tetrahedron Lett. 2002, 43, 5145.
In conclusion, macrocycles 10, 21, 11, and 33 have been
synthesized via a concise synthetic route, which is amena-
ble to variation via, for example, the use of other amino
alcohols, or 2- or 3-iodobenzaldehyde and derivatives of
other heterocycles. The X-ray crystallographic structure
of 21, in which hydrogen bonding leads to a continuous
stack of macrocycles is encouraging, and suggests that our
strategy of placing increased numbers of nitrogen atoms
in the structures to promote molecular interactions will
lead to a range of interesting properties that will mimic
more closely those found in naturally occurring macro-
cycles.
(6) (a) Becerril, J.; Burguete, M. I.; Escuder, B.; Luis, S. V.;
Miravet, J. F.; Querol, M. Chem. Commun. 2002, 738.
(b) Becerril, J.; Burguete, M. I.; Escuder, B.; Galindo, F.;
Gavara, R.; Miravet, J. F.; Luis, S. V.; Peris, G. Chem. Eur.
J. 2004, 10, 3879. (c) Becerril, J.; Escuder, B.; Miravet, J.
F.; Gavara, R.; Luis, S. V. Eur. J. Org. Chem. 2005, 481.
(7) Dowden, J.; Edwards, P. D.; Flack, S. S.; Kilburn, J. D.
Chem. Eur. J. 1999, 5, 79.
(8) Ranganathan, D.; Thomas, A.; Haridas, V.; Kurur, S.;
Madhusudanan, K. P.; Roy, R.; Kunwar, A. C.; Sarma, A. V.
S.; Vairamani, M.; Sarma, K. D. J. Org. Chem. 1999, 64,
3620.
(9) (a) Gibson, S. E.; Middleton, R. J. J. Chem. Soc., Chem.
Commun. 1995, 1743. (b) Gibson, S. E.; Guillo, N.; Tozer,
M. J. Chem. Commun. 1997, 637. (c) Gibson, S. E.; Guillo,
N.; Middleton, R. J.; Thuilliez, A.; Tozer, M. J. J. Chem.
Soc., Perkin. Trans. 1 1997, 447. (d) Gibson, S. E.; Guillo,
N.; Jones, J. O.; Buck, I. M.; Kalindjian, S. B.; Roberts, S.;
Tozer, M. J. Eur. J. Med. Chem. 2002, 37, 379. (e) Gibson,
S. E.; Jones, J. O.; Kalindjian, S. B.; Knight, J. D.; Steed, J.
W.; Tozer, M. J. Chem. Commun. 2002, 1938. (f) Gibson,
S. E.; Jones, J. O.; Kalindjian, S. B.; Knight, J. D.; Mainolfi,
N.; Rudd, M.; Steed, J. W.; Tozer, M. J.; Wright, P. T.
Tetrahedron 2004, 60, 6945.
Acknowledgment
The authors would like to thank the Engineering and Physical
Sciences Research Council (EPSRC) for a studentship (to CL).
Synlett 2006, No. 18, 2929–2934 © Thieme Stuttgart · New York