A. Nitta et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7036–7040
7039
and selectivity against the other proteases. Among these deriva-
tives, oral administration of compound 30 reduced the blood glu-
cose excursion in OGTT. Further optimization of the derivatives is
now being investigated.
vehicle
350
300
250
200
150
100
50
30 (1mg/kg)
30 (3mg/kg)
30 (10mg/kg)
References and notes
1. Mentlein, R.; Gallwitz, B.; Schmidt, W. E. Eur. J. Biochem. 1993, 214, 829.
2. (a) Drucker, D. J. Curr. Pharm. Des. 2001, 7, 1399; (b) Holst, J. J.; Deacon, C. F.
Diabetologia 2004, 47, 357; (c) D’Alessio, D. A.; Vahl, T. P. Am. J. Physiol.
Endocrinol. Metab. 2004, 286, E882; (d) Knudsen, L. B. J. Med. Chem. 2004, 47,
4128.
3. (a) Ahren, B.; Holst, J. J.; Martensson, H.; Balkan, B. Eur. J. Pharmacol. 2000, 404,
239; (b) Deacon, C. F.; Hughes, T. E.; Joist, J. J. Diabetes 1998, 47, 764; (c)
Pospisilik, J. A.; Stafford, S. G.; Demuth, H.-U.; Brownsey, R.; Parkhous, W.;
Finegood, D. T.; McIntosh, D. H.; Pederson, R. A. Diabetes 2002, 51, 943.
4. (a) Holst, J. J.; Deacon, C. F. Diabetes 1998, 47, 1663; (b) Drucker, J. D. Expert
Opin. Investig. Drugs 2003, 12, 87; (c) Deacon, C. F.; Ahrén, B.; Holst, J. J. Expert
Opin. Investig. Drugs 2004, 13, 1091; (d) Green, B. D.; Flatt, P. R.; Bailey, C. J.
Expert Opin. Emerg. Drugs 2006, 11, 525.
0
- 30
0
30
60
90
120
Time (min)
5. Comprehensive reviews: (a) Augustyns, K.; Bal, G.; Thonus, G.; Belyaev, A.;
Zhang, X. M.; Bollaert, W.; Lambeir, A. M.; Durinx, C.; Goossens, F.; Haemers, A.
Curr. Med. Chem. 1999, 6, 311; (b) Augustyns, K.; Van der Veken, P.; Senten, K.;
Haemers, A. Expert Opin. Ther. Pat. 2003, 13, 499; (c) Webber, A. E. J. Med. Chem.
2004, 47, 4135; (d) Augustyns, A.; Van der Veken, P.; Haemers, A. Expert Opin.
Ther. Pat. 2005, 15, 1387.
6. (a) Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fischer, M. H.; He, H.; Hickey,
G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R.
A.; Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang,
B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2005, 48, 141; (b)
Deacon, C. F. Curr. Opin. Investig. Drugs 2005, 6, 419.
Figure 2. Effect of 30 in OGTT in ICR mice.
are shown in Table 1. Compounds 19 (IC50 = 0.012
(IC50 = 0.084 M) with imidazolyl substituents at the phenyl group
were more potent than unsubstituent derivatives 18
(IC50 = 0.083 M) and 17 (IC50 = 0.57 M) respectively. Thiazol-
5-yl derivatives 22 (IC50 = 0.041 M) and 23 (IC50 = 0.0078 M)
resulted in an increase in the inhibitory effects of DPP-4 against
thiazol-2-yl derivative 21 (IC50 = 0.39 M). For compounds 20
M), 26 (IC50 = 0.28 M) and 27
M), a substitution on the phenyl group did not exhibit
lM) and 25
l
l
l
l
l
l
7. (a) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B. F.; Dunning, B. E.;
Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes, T. E. J. Med. Chem. 2003, 46,
2774; (b) Ahrén, B. Expert Opin. Investig. Drugs 2006, 15, 431.
(IC50 = 0.49
(IC50 = 0.25
l
l
M), 24 (IC50 = 0.33
l
l
8. (a) Augeri, D. J.; Robl, J. A.; Betebenner, D. A.; Magnin, D. R.; Khanna, A.;
Robertson, J. G.; Wang, A.; Simpkins, L. M.; Taunk, P.; Huang, Q.; Han, S.-P.;
Abboa-Offei, B.; Cap, M.; Xin, L.; Tao, L.; Tozzo, E.; Welzel, G. E.; Egan, D. M.;
Marcinkeviciene, J.; Chang, S. Y.; Biller, S. A.; Kirby, M. S.; Parker, R. A.; Hamann,
L. G. J. Med. Chem. 2005, 48, 5025; (b) Simpkins, L. M.; Bolton, S.; Pi, Z.; Sutton, J.
C.; Kwon, C.; Zhao, G.; Magnin, D. R.; Augeri, D. J.; Gungor, T.; Rotella, D. P.; Sun,
Z.; Liu, Y.; Slusarchyk, W. S.; Marcinkeviciene, J.; Robertson, J. G.; Wang, A.;
Robl, J. A.; Atwal, K. S.; Zahler, R. L.; Parker, R. A.; Kirby, M. S.; Hamann, L. G.
Bioorg. Med. Chem. Lett. 2007, 17, 6476.
9. Feng, J.; Zhang, Z.; Wallace, M. B.; Stafford, J. A.; Kaldor, S. W.; Kassel, D. B.;
Navre, M.; Shi, L.; Skene, R. J.; Asakawa, T.; Takeuchi, K.; Xu, R.; Webb, D. R.;
Gwaltney, S. L., II J. Med. Chem. 2007, 50, 2297.
10. Taskinen, M. R.; Rosenstock, J.; Tamminen, I.; Kubiak, R.; Patel, S.; Dugi, K. A.
Diabetes Obes. Metab. 2011, 13, 65.
11. Yoshida, T.; Akahoshi, F.; Sakashita, H.; Kitajima, H.; Nakamura, M.; Sonda, S.;
Takeuchi, M.; Tanaka, Y.; Ueda, N.; Sekiguchi, S.; Ishige, T.; Shima, K.; Nabeno,
M.; Abe, Y.; Anabuki, J.; Soejima, A.; Yoshida, K.; Takashima, Y.; Ishii, S.; Kiuchi,
S.; Fukuda, S.; Tsutsumiuchi, R.; Kosaka, K.; Murozono, T.; Nakamaru, Y.;
Utsumi, H.; Masutomi, N.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Bioorg. Med.
Chem. 2012, 20, 5705.
12. Drucker, D.; Easley, C.; Kirkpatrick, P. Nat. Rev. Drug Disc. 2007, 6, 109.
13. Nitta, A.; Fujii, H.; Sakami, S.; Nishimura, Y.; Ohyama, T.; Satoh, M.; Nakaki, J.;
Satoh, S.; Inada, C.; Kozono, H.; Kumagai, H.; Shimamura, M.; Fukazawa, T.;
Kawai, H. Bioorg. Med. Chem. Lett. 2008, 18, 5435.
sufficient effects.
Table 2 shows the evaluation results of 4-heteroaryl-1,1-dioxo-
thiane derivatives. Exchange of the phenyl group of compound 17
for the 2-thiazolyl group resulted in compound 28 (IC50 = 0.19 lM)
and improved DPP-4 inhibition potency. Addition of phenyl substi-
tuent to the thiazole ring of 28 exhibited excellent DPP-4 potency
of compound 29 (IC50 = 0.060
ously,13 the 2,4,5-trifluoro group on the left phenyl ring of 29
had very effective inhibitory activity (30: IC50 = 0.016 M). Intro-
lM). As for the SAR reported previ-
l
duction of substitutions on the 4-phenylthiazol-2-yl group was
examined in selected compounds 31–38. Compound 31 with a
3-methoxy substituent on the phenyl group exhibited some
improvements in potency over unsubstituted and other substi-
tuted derivatives (31: IC50 = 0.024 lM); however, it showed low
DPP-4 inhibitory activity in human plasma in vitro (data not
shown). Oxadiazole derivatives 39–41 and an imidazole derivative
42 did not exhibit very good activity.
Secondly, since inhibition of DPP-8 and DPP-9 was suggested to
be connected to toxicity,21 some inhibitors showing high DPP-4
inhibitory effects were tested for their selectivity profiles against
the DPP-4 homologues DPP-8, DPP-9 and also QPP. These data
are presented in Tables 1 and 2. Among the tested compounds,
selectivity for DPP-4 of 19, 23 and 25 in Table 1, and 28–31 and
38 in Table 2 over the related enzymes exceeded 100-fold.
Thirdly, mouse plasma DPP-4 activity was measured after oral
administration of compounds 19, 23 and 30, which was metaboli-
cally stable in humans and mice (data not shown) and exhibited
potent DPP-4 inhibition and high selectivity. Compounds 19 and
23 did not inhibit plasma DPP-4 activity at 100 mg/kg and
30 mg/kg, respectively, because the bioavailability of both 19 and
23 was lower (data not shown). On the other hand, DPP-4 inhibi-
tory activity of compound 30 in mouse plasma was observed in a
dose-dependent manner. Finally, when 1, 3, or 10 mg/kg of com-
pound 30 was administered orally to ICR mice, blood glucose
excursion in an oral glucose tolerance test (OGTT) was reduced
in a dose-dependent manner (Fig. 2).22
14. Augustyns, K.; Veken, P. V.; Senten, K.; Haemers, A. Curr. Med. Chem. 2005, 12,
971.
15. (a) Dondoni, A.; Mastellari, A. R.; Medici, A.; Negrini, E.; Pedrini, P. Synthesis
1986, 7579; (b) Elguero, J.; Jaramillo, C.; Pardo, C. Synthesis 1997, 563.
16. Jirgensons, A.; Kauss, V.; Kalvinsh, I.; Gold, M. R. Synthesis 2000, 12,
1709.
17. (a) Cadogan, J. I. G.; Molina, G. A. J. Chem. Soc., Perkin Trans. 1 1973, 541; (b)
Doyle, M. P.; Dellavia, J. F., Jr.; Siegfried, B.; Bishop, S. W. J. Org. Chem. 1977, 42,
3494; (c) Blank, B.; DiTullio, N. W.; Owings, F. F.; Deviney, L.; Miao, C. K.;
Saunders, H. L. J. Med. Chem. 1977, 20, 572; (d) Haddock, E.; Kirby, P.; Johnson,
A. W. J. Chem. Soc., C 1971, 3994.
18. (a) Naito, I.; Nakagawa, S.; Takahashi, K. Chem. Pharm. Bull. 1968, 16, 148; (b)
Patil, D. G.; Chedekel, M. R. J. Org. Chem. 1984, 49, 997; (c) Duclos, R. I., Jr.; Tung,
T. S.; Rapoport, H. J. Org. Chem. 1984, 49, 5243.
19. Hiremath, U. S.; Yelamaggad, C. V.; Badami, B. V.; Puranik, G. S. J. Chem. Res.,
Synop. 1994, 12, 502.
20. An extract from Caco-2 was used as the source of DPP-4 in the assay. The cell
extract was prepared from cells solubilized in lysis buffer (10 mM, Tris–HCl
(pH 8.0), 0.15 M NaCl, 0.04 U aprotinin, 0.50% Nonidet-P40), which were then
centrifuged at 18,500 g for 1 h at 4 °C to remove the cell debris. The assay was
conducted by adding 5
volume of 135 L in an assay buffer (25 mM Tris–HCl (pH 7.4), 0.14 M NaCl,
10 mM KCl, 1% (w/v) BSA) to 96-well flat-bottomed plates. The reaction was
initiated by adding 15 L of 0.4 mM substrate (Ala-Pro-AFC). The reaction was
run for 20 min at 37 °C, and then 10 L of 25% acetic acid was added to stop the
reaction. Fluorescence was measured using Fusion (excitation 380 nm;
lg of solubilized Caco-2 protein, diluted to a final
l
l
l
In conclusion, the novel series of 3-amino-N-(4-aryl-1,1-dioxo-
thian-4-yl)butanamidesexhibited marked DPP-4 inhibitory activity
a